Multimodal / app.py
Muzammil6376's picture
Create app.py
67a56f6 verified
raw
history blame
7.02 kB
import os
import shutil
import PyPDF2
import gradio as gr
from PIL import Image
# Unstructured for rich PDF parsing
from unstructured.partition.pdf import partition_pdf
from unstructured.partition.utils.constants import PartitionStrategy
# Vision-language captioning (BLIP)
from transformers import BlipProcessor, BlipForConditionalGeneration
# LangChain vectorstore and embeddings
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
# HF Inference client for chat completions
from huggingface_hub import InferenceClient
# ── Globals ───────────────────────────────────────────────────────────────────
retriever = None # FAISS retriever for multimodal content
current_pdf_name = None # Name of the currently loaded PDF
combined_texts = None # Combined text + image captions corpus
# ── Setup: directories ─────────────────────────────────────────────────────────
FIGURES_DIR = "figures"
if os.path.exists(FIGURES_DIR):
shutil.rmtree(FIGURES_DIR)
os.makedirs(FIGURES_DIR, exist_ok=True)
# ── Models & Clients ───────────────────────────────────────────────────────────
# Chat model (Mistral-7B-Instruct)
chat_client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.3")
# Text embeddings (BAAI BGE)
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-base-en-v1.5")
# Image captioning (BLIP)
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
def generate_caption(image_path: str) -> str:
"""
Generates a natural-language caption for an image using BLIP.
"""
image = Image.open(image_path).convert('RGB')
inputs = blip_processor(image, return_tensors="pt")
out = blip_model.generate(**inputs)
caption = blip_processor.decode(out[0], skip_special_tokens=True)
return caption
def process_pdf(pdf_file) -> str:
"""
Parses the uploaded PDF into text chunks and image captions,
builds a FAISS index, and prepares the retriever.
Returns status message.
"""
global current_pdf_name, retriever, combined_texts
if pdf_file is None:
return "❌ Please upload a PDF file."
# Save PDF locally for unstructured
pdf_path = pdf_file.name
current_pdf_name = os.path.basename(pdf_path)
# Extract text, table, and image blocks
elements = partition_pdf(
filename=pdf_path,
strategy=PartitionStrategy.HI_RES,
extract_image_block_types=["Image", "Table"],
extract_image_block_output_dir=FIGURES_DIR
)
# Separate text and image elements
text_elements = [el.text for el in elements if el.category not in ["Image", "Table"] and el.text]
image_files = [os.path.join(FIGURES_DIR, f)
for f in os.listdir(FIGURES_DIR)
if f.lower().endswith((".png", ".jpg", ".jpeg"))]
# Generate captions for each image
captions = []
for img in image_files:
cap = generate_caption(img)
captions.append(cap)
# Combine all pieces for indexing
combined_texts = text_elements + captions
# Create FAISS index and retriever
index = FAISS.from_texts(combined_texts, embeddings)
retriever = index.as_retriever(search_kwargs={"k": 2})
status = f"βœ… Indexed '{current_pdf_name}' β€” {len(text_elements)} text blocks + {len(captions)} image captions"
return status
def ask_question(question: str) -> str:
"""
Retrieves relevant chunks from the FAISS index and generates an answer via chat model.
"""
global retriever
if retriever is None:
return "❌ Please upload and process a PDF first."
if not question.strip():
return "❌ Please enter a question."
docs = retriever.get_relevant_documents(question)
context = "\n\n".join(doc.page_content for doc in docs)
prompt = (
"Use the following document excerpts to answer the question.\n\n"
f"{context}\n\n"
f"Question: {question}\n"
"Answer:"
)
response = chat_client.chat_completion(
messages=[{"role": "user", "content": prompt}],
max_tokens=128,
temperature=0.5
)
answer = response["choices"][0]["message"]["content"].strip()
return answer
def clear_interface():
"""Resets global state and clears the figures directory."""
global retriever, current_pdf_name, combined_texts
retriever = None
current_pdf_name = None
combined_texts = None
shutil.rmtree(FIGURES_DIR)
os.makedirs(FIGURES_DIR, exist_ok=True)
return ""
# ── Gradio UI ────────────────────────────────────────────────────────────────
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue")
with gr.Blocks(theme=theme, css="""
.container { border-radius: 10px; padding: 15px; }
.pdf-active { border-left: 3px solid #6366f1; padding-left: 10px; background-color: rgba(99,102,241,0.1); }
.footer { text-align: center; margin-top: 30px; font-size: 0.8em; color: #666; }
.main-title { text-align: center; font-size: 64px; font-weight: bold; margin-bottom: 20px; }
""") as demo:
gr.Markdown("<div class='main-title'>DocQueryAI (Multimodal)</div>")
with gr.Row():
with gr.Column():
gr.Markdown("## πŸ“„ Document Input")
pdf_display = gr.Textbox(label="Active Document", interactive=False, elem_classes="pdf-active")
pdf_file = gr.File(file_types=[".pdf"], type="file")
process_btn = gr.Button("πŸ“€ Process Document", variant="primary")
status_box = gr.Textbox(label="Status", interactive=False)
with gr.Column():
gr.Markdown("## ❓ Ask Questions")
question_input = gr.Textbox(lines=3, placeholder="Enter your question here…")
ask_btn = gr.Button("πŸ” Ask Question", variant="primary")
answer_output = gr.Textbox(label="Answer", lines=8, interactive=False)
clear_btn = gr.Button("πŸ—‘οΈ Clear All", variant="secondary")
gr.Markdown("<div class='footer'>Powered by LangChain + Mistral 7B + FAISS + BLIP | Gradio</div>")
process_btn.click(fn=process_pdf, inputs=[pdf_file], outputs=[status_box])
ask_btn.click(fn=ask_question, inputs=[question_input], outputs=[answer_output])
clear_btn.click(fn=clear_interface, outputs=[status_box, answer_output])
if __name__ == "__main__":
demo.launch(debug=True, share=True)