|
import gradio as gr |
|
from fastai.vision.all import * |
|
import skimage |
|
|
|
|
|
from fastai import * |
|
from fastai.vision import * |
|
|
|
|
|
learn = load_learner('export.pkl') |
|
|
|
labels = learn.dls.vocab |
|
def predict(img): |
|
img = PILImage.create(img) |
|
pred,pred_idx,probs = learn.predict(img) |
|
return {labels[i]: float(probs[i]) for i in range(len(labels))} |
|
|
|
title = "CLASMA" |
|
description = "AI app for classifying disease in crops leaves." |
|
article = "sample image" |
|
examples = ['corn.jpg'] |
|
interpretation = 'default' |
|
enable_queue = True |
|
|
|
gr.Interface(fn = predict, inputs = gr.inputs.Image(shape = (512, 512)), |
|
outputs = gr.outputs.Label(num_top_classes = 3), |
|
title = title, |
|
description = description, |
|
article = article, |
|
examples = examples, |
|
interpretation = interpretation, |
|
enable_queue = enable_queue).launch() |