import gradio as gr from fastai.vision.all import * #import pathlib #temp = pathlib.PosixPath #pathlib.PosixPath = pathlib.WindowsPath catergories = ('bunny girl', 'cat neko girl', 'fox kitsune girl', 'wolfgirl') def load_model_and_predict(img): #img = PILImage.create(image_path) pred, idx, probs = learn.predict(img) #return pred, probs return dict(zip(catergories, map(float,probs))) model_path = "export_resnet18_e12_3.pkl" learn = load_learner(model_path) image = gr.inputs.Image(shape=(224, 224)) label = gr.outputs.Label() iface = gr.Interface(fn=load_model_and_predict, inputs=image, outputs=label, title='兽耳娘分类器', description='这是一个基于resnet18训练的玩具模型,可以将输入的~二次元~图画分类为:bunny girl/兔兔、cat neko girl/猫娘、fox kitsune girl/狐娘、wolfgirl/狼娘。 \n 每类均使用15张随机画作或冻鳗截图训练,该模型的分类正确率受裁剪方法、图画构图、角色姿势等多种因素影响,准确率难以保证,仅供娱乐。 \n 08/28/23') iface.launch()