File size: 59,475 Bytes
18ddfe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 |
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A library of tasks.
This interface is intended to implement a wide variety of navigation
tasks. See go/navigation_tasks for a list.
"""
import abc
import collections
import math
import threading
import networkx as nx
import numpy as np
import tensorflow as tf
#from pyglib import logging
#import gin
from envs import task_env
from envs import util as envs_util
# Utility functions.
def _pad_or_clip_array(np_arr, arr_len, is_front_clip=True, output_mask=False):
"""Make np_arr array to have length arr_len.
If the array is shorter than arr_len, then it is padded from the front with
zeros. If it is longer, then it is clipped either from the back or from the
front. Only the first dimension is modified.
Args:
np_arr: numpy array.
arr_len: integer scalar.
is_front_clip: a boolean. If true then clipping is done in the front,
otherwise in the back.
output_mask: If True, outputs a numpy array of rank 1 which represents
a mask of which values have been added (0 - added, 1 - actual output).
Returns:
A numpy array and the size of padding (as a python int32). This size is
negative is the array is clipped.
"""
shape = list(np_arr.shape)
pad_size = arr_len - shape[0]
padded_or_clipped = None
if pad_size < 0:
if is_front_clip:
padded_or_clipped = np_arr[-pad_size:, :]
else:
padded_or_clipped = np_arr[:arr_len, :]
elif pad_size > 0:
padding = np.zeros([pad_size] + shape[1:], dtype=np_arr.dtype)
padded_or_clipped = np.concatenate([np_arr, padding], axis=0)
else:
padded_or_clipped = np_arr
if output_mask:
mask = np.ones((arr_len,), dtype=np.int)
if pad_size > 0:
mask[-pad_size:] = 0
return padded_or_clipped, pad_size, mask
else:
return padded_or_clipped, pad_size
def classification_loss(truth, predicted, weights=None, is_one_hot=True):
"""A cross entropy loss.
Computes the mean of cross entropy losses for all pairs of true labels and
predictions. It wraps around a tf implementation of the cross entropy loss
with additional reformating of the inputs. If the truth and predicted are
n-rank Tensors with n > 2, then these are reshaped to 2-rank Tensors. It
allows for truth to be specified as one hot vector or class indices. Finally,
a weight can be specified for each element in truth and predicted.
Args:
truth: an n-rank or (n-1)-rank Tensor containing labels. If is_one_hot is
True, then n-rank Tensor is expected, otherwise (n-1) rank one.
predicted: an n-rank float Tensor containing prediction probabilities.
weights: an (n-1)-rank float Tensor of weights
is_one_hot: a boolean.
Returns:
A TF float scalar.
"""
num_labels = predicted.get_shape().as_list()[-1]
if not is_one_hot:
truth = tf.reshape(truth, [-1])
truth = tf.one_hot(
truth, depth=num_labels, on_value=1.0, off_value=0.0, axis=-1)
else:
truth = tf.reshape(truth, [-1, num_labels])
predicted = tf.reshape(predicted, [-1, num_labels])
losses = tf.nn.softmax_cross_entropy_with_logits(
labels=truth, logits=predicted)
if weights is not None:
losses = tf.boolean_mask(losses,
tf.cast(tf.reshape(weights, [-1]), dtype=tf.bool))
return tf.reduce_mean(losses)
class UnrolledTaskIOConfig(object):
"""Configuration of task inputs and outputs.
A task can have multiple inputs, which define the context, and a task query
which defines what is to be executed in this context. The desired execution
is encoded in an output. The config defines the shapes of the inputs, the
query and the outputs.
"""
def __init__(self, inputs, output, query=None):
"""Constructs a Task input/output config.
Args:
inputs: a list of tuples. Each tuple represents the configuration of an
input, with first element being the type (a string value) and the second
element the shape.
output: a tuple representing the configuration of the output.
query: a tuple representing the configuration of the query. If no query,
then None.
"""
# A configuration of a single input, output or query. Consists of the type,
# which can be one of the three specified above, and a shape. The shape must
# be consistent with the type, e.g. if type == 'image', then shape is a 3
# valued list.
io_config = collections.namedtuple('IOConfig', ['type', 'shape'])
def assert_config(config):
if not isinstance(config, tuple):
raise ValueError('config must be a tuple. Received {}'.format(
type(config)))
if len(config) != 2:
raise ValueError('config must have 2 elements, has %d' % len(config))
if not isinstance(config[0], tf.DType):
raise ValueError('First element of config must be a tf.DType.')
if not isinstance(config[1], list):
raise ValueError('Second element of config must be a list.')
assert isinstance(inputs, collections.OrderedDict)
for modality_type in inputs:
assert_config(inputs[modality_type])
self._inputs = collections.OrderedDict(
[(k, io_config(*value)) for k, value in inputs.iteritems()])
if query is not None:
assert_config(query)
self._query = io_config(*query)
else:
self._query = None
assert_config(output)
self._output = io_config(*output)
@property
def inputs(self):
return self._inputs
@property
def output(self):
return self._output
@property
def query(self):
return self._query
class UnrolledTask(object):
"""An interface for a Task which can be unrolled during training.
Each example is called episode and consists of inputs and target output, where
the output can be considered as desired unrolled sequence of actions for the
inputs. For the specified tasks, these action sequences are to be
unambiguously definable.
"""
__metaclass__ = abc.ABCMeta
def __init__(self, config):
assert isinstance(config, UnrolledTaskIOConfig)
self._config = config
# A dict of bookkeeping variables.
self.info = {}
# Tensorflow input is multithreaded and this lock is needed to prevent
# race condition in the environment. Without the lock, non-thread safe
# environments crash.
self._lock = threading.Lock()
@property
def config(self):
return self._config
@abc.abstractmethod
def episode(self):
"""Returns data needed to train and test a single episode.
Each episode consists of inputs, which define the context of the task, a
query which defines the task, and a target output, which defines a
sequence of actions to be executed for this query. This sequence should not
require feedback, i.e. can be predicted purely from input and query.]
Returns:
inputs, query, output, where inputs is a list of numpy arrays and query
and output are numpy arrays. These arrays must be of shape and type as
specified in the task configuration.
"""
pass
def reset(self, observation):
"""Called after the environment is reset."""
pass
def episode_batch(self, batch_size):
"""Returns a batch of episodes.
Args:
batch_size: size of batch.
Returns:
(inputs, query, output, masks) where inputs is list of numpy arrays and
query, output, and mask are numpy arrays. These arrays must be of shape
and type as specified in the task configuration with one additional
preceding dimension corresponding to the batch.
Raises:
ValueError: if self.episode() returns illegal values.
"""
batched_inputs = collections.OrderedDict(
[[mtype, []] for mtype in self.config.inputs])
batched_queries = []
batched_outputs = []
batched_masks = []
for _ in range(int(batch_size)):
with self._lock:
# The episode function needs to be thread-safe. Since the current
# implementation for the envs are not thread safe we need to have lock
# the operations here.
inputs, query, outputs = self.episode()
if not isinstance(outputs, tuple):
raise ValueError('Outputs return value must be tuple.')
if len(outputs) != 2:
raise ValueError('Output tuple must be of size 2.')
if inputs is not None:
for modality_type in batched_inputs:
batched_inputs[modality_type].append(
np.expand_dims(inputs[modality_type], axis=0))
if query is not None:
batched_queries.append(np.expand_dims(query, axis=0))
batched_outputs.append(np.expand_dims(outputs[0], axis=0))
if outputs[1] is not None:
batched_masks.append(np.expand_dims(outputs[1], axis=0))
batched_inputs = {
k: np.concatenate(i, axis=0) for k, i in batched_inputs.iteritems()
}
if batched_queries:
batched_queries = np.concatenate(batched_queries, axis=0)
batched_outputs = np.concatenate(batched_outputs, axis=0)
if batched_masks:
batched_masks = np.concatenate(batched_masks, axis=0).astype(np.float32)
else:
# When the array is empty, the default np.dtype is float64 which causes
# py_func to crash in the tests.
batched_masks = np.array([], dtype=np.float32)
batched_inputs = [batched_inputs[k] for k in self._config.inputs]
return batched_inputs, batched_queries, batched_outputs, batched_masks
def tf_episode_batch(self, batch_size):
"""A batch of episodes as TF Tensors.
Same as episode_batch with the difference that the return values are TF
Tensors.
Args:
batch_size: a python float for the batch size.
Returns:
inputs, query, output, mask where inputs is a dictionary of tf.Tensor
where the keys are the modality types specified in the config.inputs.
query, output, and mask are TF Tensors. These tensors must
be of shape and type as specified in the task configuration with one
additional preceding dimension corresponding to the batch. Both mask and
output have the same shape as output.
"""
# Define TF outputs.
touts = []
shapes = []
for _, i in self._config.inputs.iteritems():
touts.append(i.type)
shapes.append(i.shape)
if self._config.query is not None:
touts.append(self._config.query.type)
shapes.append(self._config.query.shape)
# Shapes and types for batched_outputs.
touts.append(self._config.output.type)
shapes.append(self._config.output.shape)
# Shapes and types for batched_masks.
touts.append(self._config.output.type)
shapes.append(self._config.output.shape[0:1])
def episode_batch_func():
if self.config.query is None:
inp, _, output, masks = self.episode_batch(int(batch_size))
return tuple(inp) + (output, masks)
else:
inp, query, output, masks = self.episode_batch(int(batch_size))
return tuple(inp) + (query, output, masks)
tf_episode_batch = tf.py_func(episode_batch_func, [], touts,
stateful=True, name='taskdata')
for episode, shape in zip(tf_episode_batch, shapes):
episode.set_shape([batch_size] + shape)
tf_episode_batch_dict = collections.OrderedDict([
(mtype, episode)
for mtype, episode in zip(self.config.inputs.keys(), tf_episode_batch)
])
cur_index = len(self.config.inputs.keys())
tf_query = None
if self.config.query is not None:
tf_query = tf_episode_batch[cur_index]
cur_index += 1
tf_outputs = tf_episode_batch[cur_index]
tf_masks = tf_episode_batch[cur_index + 1]
return tf_episode_batch_dict, tf_query, tf_outputs, tf_masks
@abc.abstractmethod
def target_loss(self, true_targets, targets, weights=None):
"""A loss for training a task model.
This loss measures the discrepancy between the task outputs, the true and
predicted ones.
Args:
true_targets: tf.Tensor of shape and type as defined in the task config
containing the true outputs.
targets: tf.Tensor of shape and type as defined in the task config
containing the predicted outputs.
weights: a bool tf.Tensor of shape as targets. Only true values are
considered when formulating the loss.
"""
pass
def reward(self, obs, done, info):
"""Returns a reward.
The tasks has to compute a reward based on the state of the environment. The
reward computation, though, is task specific. The task is to use the
environment interface, as defined in task_env.py, to compute the reward. If
this interface does not expose enough information, it is to be updated.
Args:
obs: Observation from environment's step function.
done: Done flag from environment's step function.
info: Info dict from environment's step function.
Returns:
obs: Observation.
reward: Floating point value.
done: Done flag.
info: Info dict.
"""
# Default implementation does not do anything.
return obs, 0.0, done, info
class RandomExplorationBasedTask(UnrolledTask):
"""A Task which starts with a random exploration of the environment."""
def __init__(self,
env,
seed,
add_query_noise=False,
query_noise_var=0.0,
*args,
**kwargs): # pylint: disable=keyword-arg-before-vararg
"""Initializes a Task using a random exploration runs.
Args:
env: an instance of type TaskEnv and gym.Env.
seed: a random seed.
add_query_noise: boolean, if True then whatever queries are generated,
they are randomly perturbed. The semantics of the queries depends on the
concrete task implementation.
query_noise_var: float, the variance of Gaussian noise used for query
perturbation. Used iff add_query_noise==True.
*args: see super class.
**kwargs: see super class.
"""
super(RandomExplorationBasedTask, self).__init__(*args, **kwargs)
assert isinstance(env, task_env.TaskEnv)
self._env = env
self._env.set_task(self)
self._rng = np.random.RandomState(seed)
self._add_query_noise = add_query_noise
self._query_noise_var = query_noise_var
# GoToStaticXTask can also take empty config but for the rest of the classes
# the number of modality types is 1.
if len(self.config.inputs.keys()) > 1:
raise NotImplementedError('current implementation supports input '
'with only one modality type or less.')
def _exploration(self):
"""Generates a random exploration run.
The function uses the environment to generate a run.
Returns:
A tuple of numpy arrays. The i-th array contains observation of type and
shape as specified in config.inputs[i].
A list of states along the exploration path.
A list of vertex indices corresponding to the path of the exploration.
"""
in_seq_len = self._config.inputs.values()[0].shape[0]
path, _, states, step_outputs = self._env.random_step_sequence(
min_len=in_seq_len)
obs = {modality_type: [] for modality_type in self._config.inputs}
for o in step_outputs:
step_obs, _, done, _ = o
# It is expected that each value of step_obs is a dict of observations,
# whose dimensions are consistent with the config.inputs sizes.
for modality_type in self._config.inputs:
assert modality_type in step_obs, '{}'.format(type(step_obs))
o = step_obs[modality_type]
i = self._config.inputs[modality_type]
assert len(o.shape) == len(i.shape) - 1
for dim_o, dim_i in zip(o.shape, i.shape[1:]):
assert dim_o == dim_i, '{} != {}'.format(dim_o, dim_i)
obs[modality_type].append(o)
if done:
break
if not obs:
return obs, states, path
max_path_len = int(
round(in_seq_len * float(len(path)) / float(len(obs.values()[0]))))
path = path[-max_path_len:]
states = states[-in_seq_len:]
# The above obs is a list of tuples of np,array. Re-format them as tuple of
# np.array, each array containing all observations from all steps.
def regroup(obs, i):
"""Regroups observations.
Args:
obs: a list of tuples of same size. The k-th tuple contains all the
observations from k-th step. Each observation is a numpy array.
i: the index of the observation in each tuple to be grouped.
Returns:
A numpy array of shape config.inputs[i] which contains all i-th
observations from all steps. These are concatenated along the first
dimension. In addition, if the number of observations is different from
the one specified in config.inputs[i].shape[0], then the array is either
padded from front or clipped.
"""
grouped_obs = np.concatenate(
[np.expand_dims(o, axis=0) for o in obs[i]], axis=0)
in_seq_len = self._config.inputs[i].shape[0]
# pylint: disable=unbalanced-tuple-unpacking
grouped_obs, _ = _pad_or_clip_array(
grouped_obs, in_seq_len, is_front_clip=True)
return grouped_obs
all_obs = {i: regroup(obs, i) for i in self._config.inputs}
return all_obs, states, path
def _obs_to_state(self, path, states):
"""Computes mapping between path nodes and states."""
# Generate a numpy array of locations corresponding to the path vertices.
path_coordinates = map(self._env.vertex_to_pose, path)
path_coordinates = np.concatenate(
[np.reshape(p, [1, 2]) for p in path_coordinates])
# The observations are taken along a smoothed trajectory following the path.
# We compute a mapping between the obeservations and the map vertices.
path_to_obs = collections.defaultdict(list)
obs_to_state = []
for i, s in enumerate(states):
location = np.reshape(s[0:2], [1, 2])
index = np.argmin(
np.reshape(
np.sum(np.power(path_coordinates - location, 2), axis=1), [-1]))
index = path[index]
path_to_obs[index].append(i)
obs_to_state.append(index)
return path_to_obs, obs_to_state
def _perturb_state(self, state, noise_var):
"""Perturbes the state.
The location are purturbed using a Gaussian noise with variance
noise_var. The orientation is uniformly sampled.
Args:
state: a numpy array containing an env state (x, y locations).
noise_var: float
Returns:
The perturbed state.
"""
def normal(v, std):
if std > 0:
n = self._rng.normal(0.0, std)
n = min(n, 2.0 * std)
n = max(n, -2.0 * std)
return v + n
else:
return v
state = state.copy()
state[0] = normal(state[0], noise_var)
state[1] = normal(state[1], noise_var)
if state.size > 2:
state[2] = self._rng.uniform(-math.pi, math.pi)
return state
def _sample_obs(self,
indices,
observations,
observation_states,
path_to_obs,
max_obs_index=None,
use_exploration_obs=True):
"""Samples one observation which corresponds to vertex_index in path.
In addition, the sampled observation must have index in observations less
than max_obs_index. If these two conditions cannot be satisfied the
function returns None.
Args:
indices: a list of integers.
observations: a list of numpy arrays containing all the observations.
observation_states: a list of numpy arrays, each array representing the
state of the observation.
path_to_obs: a dict of path indices to lists of observation indices.
max_obs_index: an integer.
use_exploration_obs: if True, then the observation is sampled among the
specified observations, otherwise it is obtained from the environment.
Returns:
A tuple of:
-- A numpy array of size width x height x 3 representing the sampled
observation.
-- The index of the sampld observation among the input observations.
-- The state at which the observation is captured.
Raises:
ValueError: if the observation and observation_states lists are of
different lengths.
"""
if len(observations) != len(observation_states):
raise ValueError('observation and observation_states lists must have '
'equal lengths')
if not indices:
return None, None, None
vertex_index = self._rng.choice(indices)
if use_exploration_obs:
obs_indices = path_to_obs[vertex_index]
if max_obs_index is not None:
obs_indices = [i for i in obs_indices if i < max_obs_index]
if obs_indices:
index = self._rng.choice(obs_indices)
if self._add_query_noise:
xytheta = self._perturb_state(observation_states[index],
self._query_noise_var)
return self._env.observation(xytheta), index, xytheta
else:
return observations[index], index, observation_states[index]
else:
return None, None, None
else:
xy = self._env.vertex_to_pose(vertex_index)
xytheta = np.array([xy[0], xy[1], 0.0])
xytheta = self._perturb_state(xytheta, self._query_noise_var)
return self._env.observation(xytheta), None, xytheta
class AreNearbyTask(RandomExplorationBasedTask):
"""A task of identifying whether a query is nearby current location or not.
The query is guaranteed to be in proximity of an already visited location,
i.e. close to one of the observations. For each observation we have one
query, which is either close or not to this observation.
"""
def __init__(
self,
max_distance=0,
*args,
**kwargs): # pylint: disable=keyword-arg-before-vararg
super(AreNearbyTask, self).__init__(*args, **kwargs)
self._max_distance = max_distance
if len(self.config.inputs.keys()) != 1:
raise NotImplementedError('current implementation supports input '
'with only one modality type')
def episode(self):
"""Episode data.
Returns:
observations: a tuple with one element. This element is a numpy array of
size in_seq_len x observation_size x observation_size x 3 containing
in_seq_len images.
query: a numpy array of size
in_seq_len x observation_size X observation_size x 3 containing a query
image.
A tuple of size two. First element is a in_seq_len x 2 numpy array of
either 1.0 or 0.0. The i-th element denotes whether the i-th query
image is neraby (value 1.0) or not (value 0.0) to the i-th observation.
The second element in the tuple is a mask, a numpy array of size
in_seq_len x 1 and values 1.0 or 0.0 denoting whether the query is
valid or not (it can happen that the query is not valid, e.g. there are
not enough observations to have a meaningful queries).
"""
observations, states, path = self._exploration()
assert len(observations.values()[0]) == len(states)
# The observations are taken along a smoothed trajectory following the path.
# We compute a mapping between the obeservations and the map vertices.
path_to_obs, obs_to_path = self._obs_to_state(path, states)
# Go over all observations, and sample a query. With probability 0.5 this
# query is a nearby observation (defined as belonging to the same vertex
# in path).
g = self._env.graph
queries = []
labels = []
validity_masks = []
query_index_in_observations = []
for i, curr_o in enumerate(observations.values()[0]):
p = obs_to_path[i]
low = max(0, i - self._max_distance)
# A list of lists of vertex indices. Each list in this group corresponds
# to one possible label.
index_groups = [[], [], []]
# Nearby visited indices, label 1.
nearby_visited = [
ii for ii in path[low:i + 1] + g[p].keys() if ii in obs_to_path[:i]
]
nearby_visited = [ii for ii in index_groups[1] if ii in path_to_obs]
# NOT Nearby visited indices, label 0.
not_nearby_visited = [ii for ii in path[:low] if ii not in g[p].keys()]
not_nearby_visited = [ii for ii in index_groups[0] if ii in path_to_obs]
# NOT visited indices, label 2.
not_visited = [
ii for ii in range(g.number_of_nodes()) if ii not in path[:i + 1]
]
index_groups = [not_nearby_visited, nearby_visited, not_visited]
# Consider only labels for which there are indices.
allowed_labels = [ii for ii, group in enumerate(index_groups) if group]
label = self._rng.choice(allowed_labels)
indices = list(set(index_groups[label]))
max_obs_index = None if label == 2 else i
use_exploration_obs = False if label == 2 else True
o, obs_index, _ = self._sample_obs(
indices=indices,
observations=observations.values()[0],
observation_states=states,
path_to_obs=path_to_obs,
max_obs_index=max_obs_index,
use_exploration_obs=use_exploration_obs)
query_index_in_observations.append(obs_index)
# If we cannot sample a valid query, we mark it as not valid in mask.
if o is None:
label = 0.0
o = curr_o
validity_masks.append(0)
else:
validity_masks.append(1)
queries.append(o.values()[0])
labels.append(label)
query = np.concatenate([np.expand_dims(q, axis=0) for q in queries], axis=0)
def one_hot(label, num_labels=3):
a = np.zeros((num_labels,), dtype=np.float)
a[int(label)] = 1.0
return a
outputs = np.stack([one_hot(l) for l in labels], axis=0)
validity_mask = np.reshape(
np.array(validity_masks, dtype=np.int32), [-1, 1])
self.info['query_index_in_observations'] = query_index_in_observations
self.info['observation_states'] = states
return observations, query, (outputs, validity_mask)
def target_loss(self, truth, predicted, weights=None):
pass
class NeighboringQueriesTask(RandomExplorationBasedTask):
"""A task of identifying whether two queries are closeby or not.
The proximity between queries is defined by the length of the shorest path
between them.
"""
def __init__(
self,
max_distance=1,
*args,
**kwargs): # pylint: disable=keyword-arg-before-vararg
"""Initializes a NeighboringQueriesTask.
Args:
max_distance: integer, the maximum distance in terms of number of vertices
between the two queries, so that they are considered neighboring.
*args: for super class.
**kwargs: for super class.
"""
super(NeighboringQueriesTask, self).__init__(*args, **kwargs)
self._max_distance = max_distance
if len(self.config.inputs.keys()) != 1:
raise NotImplementedError('current implementation supports input '
'with only one modality type')
def episode(self):
"""Episode data.
Returns:
observations: a tuple with one element. This element is a numpy array of
size in_seq_len x observation_size x observation_size x 3 containing
in_seq_len images.
query: a numpy array of size
2 x observation_size X observation_size x 3 containing a pair of query
images.
A tuple of size two. First element is a numpy array of size 2 containing
a one hot vector of whether the two observations are neighobring. Second
element is a boolean numpy value denoting whether this is a valid
episode.
"""
observations, states, path = self._exploration()
assert len(observations.values()[0]) == len(states)
path_to_obs, _ = self._obs_to_state(path, states)
# Restrict path to ones for which observations have been generated.
path = [p for p in path if p in path_to_obs]
# Sample first query.
query1_index = self._rng.choice(path)
# Sample label.
label = self._rng.randint(2)
# Sample second query.
# If label == 1, then second query must be nearby, otherwise not.
closest_indices = nx.single_source_shortest_path(
self._env.graph, query1_index, self._max_distance).keys()
if label == 0:
# Closest indices on the path.
indices = [p for p in path if p not in closest_indices]
else:
# Indices which are not closest on the path.
indices = [p for p in closest_indices if p in path]
query2_index = self._rng.choice(indices)
# Generate an observation.
query1, query1_index, _ = self._sample_obs(
[query1_index],
observations.values()[0],
states,
path_to_obs,
max_obs_index=None,
use_exploration_obs=True)
query2, query2_index, _ = self._sample_obs(
[query2_index],
observations.values()[0],
states,
path_to_obs,
max_obs_index=None,
use_exploration_obs=True)
queries = np.concatenate(
[np.expand_dims(q, axis=0) for q in [query1, query2]])
labels = np.array([0, 0])
labels[label] = 1
is_valid = np.array([1])
self.info['observation_states'] = states
self.info['query_indices_in_observations'] = [query1_index, query2_index]
return observations, queries, (labels, is_valid)
def target_loss(self, truth, predicted, weights=None):
pass
#@gin.configurable
class GotoStaticXTask(RandomExplorationBasedTask):
"""Task go to a static X.
If continuous reward is used only one goal is allowed so that the reward can
be computed as a delta-distance to that goal..
"""
def __init__(self,
step_reward=0.0,
goal_reward=1.0,
hit_wall_reward=-1.0,
done_at_target=False,
use_continuous_reward=False,
*args,
**kwargs): # pylint: disable=keyword-arg-before-vararg
super(GotoStaticXTask, self).__init__(*args, **kwargs)
if len(self.config.inputs.keys()) > 1:
raise NotImplementedError('current implementation supports input '
'with only one modality type or less.')
self._step_reward = step_reward
self._goal_reward = goal_reward
self._hit_wall_reward = hit_wall_reward
self._done_at_target = done_at_target
self._use_continuous_reward = use_continuous_reward
self._previous_path_length = None
def episode(self):
observations, _, path = self._exploration()
if len(path) < 2:
raise ValueError('The exploration path has only one node.')
g = self._env.graph
start = path[-1]
while True:
goal = self._rng.choice(path[:-1])
if goal != start:
break
goal_path = nx.shortest_path(g, start, goal)
init_orientation = self._rng.uniform(0, np.pi, (1,))
trajectory = np.array(
[list(self._env.vertex_to_pose(p)) for p in goal_path])
init_xy = np.reshape(trajectory[0, :], [-1])
init_state = np.concatenate([init_xy, init_orientation], 0)
trajectory = trajectory[1:, :]
deltas = envs_util.trajectory_to_deltas(trajectory, init_state)
output_seq_len = self._config.output.shape[0]
arr = _pad_or_clip_array(deltas, output_seq_len, output_mask=True)
# pylint: disable=unbalanced-tuple-unpacking
thetas, _, thetas_mask = arr
query = self._env.observation(self._env.vertex_to_pose(goal)).values()[0]
return observations, query, (thetas, thetas_mask)
def reward(self, obs, done, info):
if 'wall_collision' in info and info['wall_collision']:
return obs, self._hit_wall_reward, done, info
reward = 0.0
current_vertex = self._env.pose_to_vertex(self._env.state)
if current_vertex in self._env.targets():
if self._done_at_target:
done = True
else:
obs = self._env.reset()
reward = self._goal_reward
else:
if self._use_continuous_reward:
if len(self._env.targets()) != 1:
raise ValueError(
'FindX task with continuous reward is assuming only one target.')
goal_vertex = self._env.targets()[0]
path_length = self._compute_path_length(goal_vertex)
reward = self._previous_path_length - path_length
self._previous_path_length = path_length
else:
reward = self._step_reward
return obs, reward, done, info
def _compute_path_length(self, goal_vertex):
current_vertex = self._env.pose_to_vertex(self._env.state)
path = nx.shortest_path(self._env.graph, current_vertex, goal_vertex)
assert len(path) >= 2
curr_xy = np.array(self._env.state[:2])
next_xy = np.array(self._env.vertex_to_pose(path[1]))
last_step_distance = np.linalg.norm(next_xy - curr_xy)
return (len(path) - 2) * self._env.cell_size_px + last_step_distance
def reset(self, observation):
if self._use_continuous_reward:
if len(self._env.targets()) != 1:
raise ValueError(
'FindX task with continuous reward is assuming only one target.')
goal_vertex = self._env.targets()[0]
self._previous_path_length = self._compute_path_length(goal_vertex)
def target_loss(self, truth, predicted, weights=None):
"""Action classification loss.
Args:
truth: a batch_size x sequence length x number of labels float
Tensor containing a one hot vector for each label in each batch and
time.
predicted: a batch_size x sequence length x number of labels float
Tensor containing a predicted distribution over all actions.
weights: a batch_size x sequence_length float Tensor of bool
denoting which actions are valid.
Returns:
An average cross entropy over all batches and elements in sequence.
"""
return classification_loss(
truth=truth, predicted=predicted, weights=weights, is_one_hot=True)
class RelativeLocationTask(RandomExplorationBasedTask):
"""A task of estimating the relative location of a query w.r.t current.
It is to be used for debugging. It is designed such that the output is a
single value, out of a discrete set of values, so that it can be phrased as
a classification problem.
"""
def __init__(self, num_labels, *args, **kwargs):
"""Initializes a relative location task.
Args:
num_labels: integer, number of orientations to bin the relative
orientation into.
*args: see super class.
**kwargs: see super class.
"""
super(RelativeLocationTask, self).__init__(*args, **kwargs)
self._num_labels = num_labels
if len(self.config.inputs.keys()) != 1:
raise NotImplementedError('current implementation supports input '
'with only one modality type')
def episode(self):
observations, states, path = self._exploration()
# Select a random element from history.
path_to_obs, _ = self._obs_to_state(path, states)
use_exploration_obs = not self._add_query_noise
query, _, query_state = self._sample_obs(
path[:-1],
observations.values()[0],
states,
path_to_obs,
max_obs_index=None,
use_exploration_obs=use_exploration_obs)
x, y, theta = tuple(states[-1])
q_x, q_y, _ = tuple(query_state)
t_x, t_y = q_x - x, q_y - y
(rt_x, rt_y) = (np.sin(theta) * t_x - np.cos(theta) * t_y,
np.cos(theta) * t_x + np.sin(theta) * t_y)
# Bins are [a(i), a(i+1)] for a(i) = -pi + 0.5 * bin_size + i * bin_size.
shift = np.pi * (1 - 1.0 / (2.0 * self._num_labels))
orientation = np.arctan2(rt_y, rt_x) + shift
if orientation < 0:
orientation += 2 * np.pi
label = int(np.floor(self._num_labels * orientation / (2 * np.pi)))
out_shape = self._config.output.shape
if len(out_shape) != 1:
raise ValueError('Output shape should be of rank 1.')
if out_shape[0] != self._num_labels:
raise ValueError('Output shape must be of size %d' % self._num_labels)
output = np.zeros(out_shape, dtype=np.float32)
output[label] = 1
return observations, query, (output, None)
def target_loss(self, truth, predicted, weights=None):
return classification_loss(
truth=truth, predicted=predicted, weights=weights, is_one_hot=True)
class LocationClassificationTask(UnrolledTask):
"""A task of classifying a location as one of several classes.
The task does not have an input, but just a query and an output. The query
is an observation of the current location, e.g. an image taken from the
current state. The output is a label classifying this location in one of
predefined set of locations (or landmarks).
The current implementation classifies locations as intersections based on the
number and directions of biforcations. It is expected that a location can have
at most 4 different directions, aligned with the axes. As each of these four
directions might be present or not, the number of possible intersections are
2^4 = 16.
"""
def __init__(self, env, seed, *args, **kwargs):
super(LocationClassificationTask, self).__init__(*args, **kwargs)
self._env = env
self._rng = np.random.RandomState(seed)
# A location property which can be set. If not set, a random one is
# generated.
self._location = None
if len(self.config.inputs.keys()) > 1:
raise NotImplementedError('current implementation supports input '
'with only one modality type or less.')
@property
def location(self):
return self._location
@location.setter
def location(self, location):
self._location = location
def episode(self):
# Get a location. If not set, sample on at a vertex with a random
# orientation
location = self._location
if location is None:
num_nodes = self._env.graph.number_of_nodes()
vertex = int(math.floor(self._rng.uniform(0, num_nodes)))
xy = self._env.vertex_to_pose(vertex)
theta = self._rng.uniform(0, 2 * math.pi)
location = np.concatenate(
[np.reshape(xy, [-1]), np.array([theta])], axis=0)
else:
vertex = self._env.pose_to_vertex(location)
theta = location[2]
neighbors = self._env.graph.neighbors(vertex)
xy_s = [self._env.vertex_to_pose(n) for n in neighbors]
def rotate(xy, theta):
"""Rotates a vector around the origin by angle theta.
Args:
xy: a numpy darray of shape (2, ) of floats containing the x and y
coordinates of a vector.
theta: a python float containing the rotation angle in radians.
Returns:
A numpy darray of floats of shape (2,) containing the x and y
coordinates rotated xy.
"""
rotated_x = np.cos(theta) * xy[0] - np.sin(theta) * xy[1]
rotated_y = np.sin(theta) * xy[0] + np.cos(theta) * xy[1]
return np.array([rotated_x, rotated_y])
# Rotate all intersection biforcation by the orientation of the agent as the
# intersection label is defined in an agent centered fashion.
xy_s = [
rotate(xy - location[0:2], -location[2] - math.pi / 4) for xy in xy_s
]
th_s = [np.arctan2(xy[1], xy[0]) for xy in xy_s]
out_shape = self._config.output.shape
if len(out_shape) != 1:
raise ValueError('Output shape should be of rank 1.')
num_labels = out_shape[0]
if num_labels != 16:
raise ValueError('Currently only 16 labels are supported '
'(there are 16 different 4 way intersection types).')
th_s = set([int(math.floor(4 * (th / (2 * np.pi) + 0.5))) for th in th_s])
one_hot_label = np.zeros((num_labels,), dtype=np.float32)
label = 0
for th in th_s:
label += pow(2, th)
one_hot_label[int(label)] = 1.0
query = self._env.observation(location).values()[0]
return [], query, (one_hot_label, None)
def reward(self, obs, done, info):
raise ValueError('Do not call.')
def target_loss(self, truth, predicted, weights=None):
return classification_loss(
truth=truth, predicted=predicted, weights=weights, is_one_hot=True)
class GotoStaticXNoExplorationTask(UnrolledTask):
"""An interface for findX tasks without exploration.
The agent is initialized a random location in a random world and a random goal
and the objective is for the agent to move toward the goal. This class
generates episode for such task. Each generates a sequence of observations x
and target outputs y. x is the observations and is an OrderedDict with keys
provided from config.inputs.keys() and the shapes provided in the
config.inputs. The output is a numpy arrays with the shape specified in the
config.output. The shape of the array is (sequence_length x action_size) where
action is the number of actions that can be done in the environment. Note that
config.output.shape should be set according to the number of actions that can
be done in the env.
target outputs y are the groundtruth value of each action that is computed
from the environment graph. The target output for each action is proportional
to the progress that each action makes. Target value of 1 means that the
action takes the agent one step closer, -1 means the action takes the agent
one step farther. Value of -2 means that action should not take place at all.
This can be because the action leads to collision or it wants to terminate the
episode prematurely.
"""
def __init__(self, env, *args, **kwargs):
super(GotoStaticXNoExplorationTask, self).__init__(*args, **kwargs)
if self._config.query is not None:
raise ValueError('query should be None.')
if len(self._config.output.shape) != 2:
raise ValueError('output should only have two dimensions:'
'(sequence_length x number_of_actions)')
for input_config in self._config.inputs.values():
if input_config.shape[0] != self._config.output.shape[0]:
raise ValueError('the first dimension of the input and output should'
'be the same.')
if len(self._config.output.shape) != 2:
raise ValueError('output shape should be '
'(sequence_length x number_of_actions)')
self._env = env
def _compute_shortest_path_length(self, vertex, target_vertices):
"""Computes length of the shortest path from vertex to any target vertexes.
Args:
vertex: integer, index of the vertex in the environment graph.
target_vertices: list of the target vertexes
Returns:
integer, minimum distance from the vertex to any of the target_vertices.
Raises:
ValueError: if there is no path between the vertex and at least one of
the target_vertices.
"""
try:
return np.min([
len(nx.shortest_path(self._env.graph, vertex, t))
for t in target_vertices
])
except:
#logging.error('there is no path between vertex %d and at least one of '
# 'the targets %r', vertex, target_vertices)
raise
def _compute_gt_value(self, vertex, target_vertices):
"""Computes groundtruth value of all the actions at the vertex.
The value of each action is the difference each action makes in the length
of the shortest path to the goal. If an action takes the agent one step
closer to the goal the value is 1. In case, it takes the agent one step away
from the goal it would be -1. If it leads to collision or if the agent uses
action stop before reaching to the goal it is -2. To avoid scale issues the
gt_values are multipled by 0.5.
Args:
vertex: integer, the index of current vertex.
target_vertices: list of the integer indexes of the target views.
Returns:
numpy array with shape (action_size,) and each element is the groundtruth
value of each action based on the progress each action makes.
"""
action_size = self._config.output.shape[1]
output_value = np.ones((action_size), dtype=np.float32) * -2
my_distance = self._compute_shortest_path_length(vertex, target_vertices)
for adj in self._env.graph[vertex]:
adj_distance = self._compute_shortest_path_length(adj, target_vertices)
if adj_distance is None:
continue
action_index = self._env.action(
self._env.vertex_to_pose(vertex), self._env.vertex_to_pose(adj))
assert action_index is not None, ('{} is not adjacent to {}. There might '
'be a problem in environment graph '
'connectivity because there is no '
'direct edge between the given '
'vertices').format(
self._env.vertex_to_pose(vertex),
self._env.vertex_to_pose(adj))
output_value[action_index] = my_distance - adj_distance
return output_value * 0.5
def episode(self):
"""Returns data needed to train and test a single episode.
Returns:
(inputs, None, output) where inputs is a dictionary of modality types to
numpy arrays. The second element is query but we assume that the goal
is also given as part of observation so it should be None for this task,
and the outputs is the tuple of ground truth action values with the
shape of (sequence_length x action_size) that is coming from
config.output.shape and a numpy array with the shape of
(sequence_length,) that is 1 if the corresponding element of the
input and output should be used in the training optimization.
Raises:
ValueError: If the output values for env.random_step_sequence is not
valid.
ValueError: If the shape of observations coming from the env is not
consistent with the config.
ValueError: If there is a modality type specified in the config but the
environment does not return that.
"""
# Sequence length is the first dimension of any of the input tensors.
sequence_length = self._config.inputs.values()[0].shape[0]
modality_types = self._config.inputs.keys()
path, _, _, step_outputs = self._env.random_step_sequence(
max_len=sequence_length)
target_vertices = [self._env.pose_to_vertex(x) for x in self._env.targets()]
if len(path) != len(step_outputs):
raise ValueError('path, and step_outputs should have equal length'
' {}!={}'.format(len(path), len(step_outputs)))
# Building up observations. observations will be a OrderedDict of
# modality types. The values are numpy arrays that follow the given shape
# in the input config for each modality type.
observations = collections.OrderedDict([k, []] for k in modality_types)
for step_output in step_outputs:
obs_dict = step_output[0]
# Only going over the modality types that are specified in the input
# config.
for modality_type in modality_types:
if modality_type not in obs_dict:
raise ValueError('modality type is not returned from the environment.'
'{} not in {}'.format(modality_type,
obs_dict.keys()))
obs = obs_dict[modality_type]
if np.any(
obs.shape != tuple(self._config.inputs[modality_type].shape[1:])):
raise ValueError(
'The observations should have the same size as speicifed in'
'config for modality type {}. {} != {}'.format(
modality_type, obs.shape,
self._config.inputs[modality_type].shape[1:]))
observations[modality_type].append(obs)
gt_value = [self._compute_gt_value(v, target_vertices) for v in path]
# pylint: disable=unbalanced-tuple-unpacking
gt_value, _, value_mask = _pad_or_clip_array(
np.array(gt_value),
sequence_length,
is_front_clip=False,
output_mask=True,
)
for modality_type, obs in observations.iteritems():
observations[modality_type], _, mask = _pad_or_clip_array(
np.array(obs), sequence_length, is_front_clip=False, output_mask=True)
assert np.all(mask == value_mask)
return observations, None, (gt_value, value_mask)
def reset(self, observation):
"""Called after the environment is reset."""
pass
def target_loss(self, true_targets, targets, weights=None):
"""A loss for training a task model.
This loss measures the discrepancy between the task outputs, the true and
predicted ones.
Args:
true_targets: tf.Tensor of tf.float32 with the shape of
(batch_size x sequence_length x action_size).
targets: tf.Tensor of tf.float32 with the shape of
(batch_size x sequence_length x action_size).
weights: tf.Tensor of tf.bool with the shape of
(batch_size x sequence_length).
Raises:
ValueError: if the shapes of the input tensors are not consistent.
Returns:
L2 loss between the predicted action values and true action values.
"""
targets_shape = targets.get_shape().as_list()
true_targets_shape = true_targets.get_shape().as_list()
if len(targets_shape) != 3 or len(true_targets_shape) != 3:
raise ValueError('invalid shape for targets or true_targets_shape')
if np.any(targets_shape != true_targets_shape):
raise ValueError('the shape of targets and true_targets are not the same'
'{} != {}'.format(targets_shape, true_targets_shape))
if weights is not None:
# Filtering targets and true_targets using weights.
weights_shape = weights.get_shape().as_list()
if np.any(weights_shape != targets_shape[0:2]):
raise ValueError('The first two elements of weights shape should match'
'target. {} != {}'.format(weights_shape,
targets_shape))
true_targets = tf.boolean_mask(true_targets, weights)
targets = tf.boolean_mask(targets, weights)
return tf.losses.mean_squared_error(tf.reshape(targets, [-1]),
tf.reshape(true_targets, [-1]))
def reward(self, obs, done, info):
raise NotImplementedError('reward is not implemented for this task')
################################################################################
class NewTask(UnrolledTask):
def __init__(self, env, *args, **kwargs):
super(NewTask, self).__init__(*args, **kwargs)
self._env = env
def _compute_shortest_path_length(self, vertex, target_vertices):
"""Computes length of the shortest path from vertex to any target vertexes.
Args:
vertex: integer, index of the vertex in the environment graph.
target_vertices: list of the target vertexes
Returns:
integer, minimum distance from the vertex to any of the target_vertices.
Raises:
ValueError: if there is no path between the vertex and at least one of
the target_vertices.
"""
try:
return np.min([
len(nx.shortest_path(self._env.graph, vertex, t))
for t in target_vertices
])
except:
logging.error('there is no path between vertex %d and at least one of '
'the targets %r', vertex, target_vertices)
raise
def _compute_gt_value(self, vertex, target_vertices):
"""Computes groundtruth value of all the actions at the vertex.
The value of each action is the difference each action makes in the length
of the shortest path to the goal. If an action takes the agent one step
closer to the goal the value is 1. In case, it takes the agent one step away
from the goal it would be -1. If it leads to collision or if the agent uses
action stop before reaching to the goal it is -2. To avoid scale issues the
gt_values are multipled by 0.5.
Args:
vertex: integer, the index of current vertex.
target_vertices: list of the integer indexes of the target views.
Returns:
numpy array with shape (action_size,) and each element is the groundtruth
value of each action based on the progress each action makes.
"""
action_size = self._config.output.shape[1]
output_value = np.ones((action_size), dtype=np.float32) * -2
# own compute _compute_shortest_path_length - returnts float
my_distance = self._compute_shortest_path_length(vertex, target_vertices)
for adj in self._env.graph[vertex]:
adj_distance = self._compute_shortest_path_length(adj, target_vertices)
if adj_distance is None:
continue
action_index = self._env.action(
self._env.vertex_to_pose(vertex), self._env.vertex_to_pose(adj))
assert action_index is not None, ('{} is not adjacent to {}. There might '
'be a problem in environment graph '
'connectivity because there is no '
'direct edge between the given '
'vertices').format(
self._env.vertex_to_pose(vertex),
self._env.vertex_to_pose(adj))
output_value[action_index] = my_distance - adj_distance
return output_value * 0.5
def episode(self):
"""Returns data needed to train and test a single episode.
Returns:
(inputs, None, output) where inputs is a dictionary of modality types to
numpy arrays. The second element is query but we assume that the goal
is also given as part of observation so it should be None for this task,
and the outputs is the tuple of ground truth action values with the
shape of (sequence_length x action_size) that is coming from
config.output.shape and a numpy array with the shape of
(sequence_length,) that is 1 if the corresponding element of the
input and output should be used in the training optimization.
Raises:
ValueError: If the output values for env.random_step_sequence is not
valid.
ValueError: If the shape of observations coming from the env is not
consistent with the config.
ValueError: If there is a modality type specified in the config but the
environment does not return that.
"""
# Sequence length is the first dimension of any of the input tensors.
sequence_length = self._config.inputs.values()[0].shape[0]
modality_types = self._config.inputs.keys()
path, _, _, step_outputs = self._env.random_step_sequence(
max_len=sequence_length)
target_vertices = [self._env.pose_to_vertex(x) for x in self._env.targets()]
if len(path) != len(step_outputs):
raise ValueError('path, and step_outputs should have equal length'
' {}!={}'.format(len(path), len(step_outputs)))
# Building up observations. observations will be a OrderedDict of
# modality types. The values are numpy arrays that follow the given shape
# in the input config for each modality type.
observations = collections.OrderedDict([k, []] for k in modality_types)
for step_output in step_outputs:
obs_dict = step_output[0]
# Only going over the modality types that are specified in the input
# config.
for modality_type in modality_types:
if modality_type not in obs_dict:
raise ValueError('modality type is not returned from the environment.'
'{} not in {}'.format(modality_type,
obs_dict.keys()))
obs = obs_dict[modality_type]
if np.any(
obs.shape != tuple(self._config.inputs[modality_type].shape[1:])):
raise ValueError(
'The observations should have the same size as speicifed in'
'config for modality type {}. {} != {}'.format(
modality_type, obs.shape,
self._config.inputs[modality_type].shape[1:]))
observations[modality_type].append(obs)
gt_value = [self._compute_gt_value(v, target_vertices) for v in path]
# pylint: disable=unbalanced-tuple-unpacking
gt_value, _, value_mask = _pad_or_clip_array(
np.array(gt_value),
sequence_length,
is_front_clip=False,
output_mask=True,
)
for modality_type, obs in observations.iteritems():
observations[modality_type], _, mask = _pad_or_clip_array(
np.array(obs), sequence_length, is_front_clip=False, output_mask=True)
assert np.all(mask == value_mask)
return observations, None, (gt_value, value_mask)
def reset(self, observation):
"""Called after the environment is reset."""
pass
def target_loss(self, true_targets, targets, weights=None):
"""A loss for training a task model.
This loss measures the discrepancy between the task outputs, the true and
predicted ones.
Args:
true_targets: tf.Tensor of tf.float32 with the shape of
(batch_size x sequence_length x action_size).
targets: tf.Tensor of tf.float32 with the shape of
(batch_size x sequence_length x action_size).
weights: tf.Tensor of tf.bool with the shape of
(batch_size x sequence_length).
Raises:
ValueError: if the shapes of the input tensors are not consistent.
Returns:
L2 loss between the predicted action values and true action values.
"""
targets_shape = targets.get_shape().as_list()
true_targets_shape = true_targets.get_shape().as_list()
if len(targets_shape) != 3 or len(true_targets_shape) != 3:
raise ValueError('invalid shape for targets or true_targets_shape')
if np.any(targets_shape != true_targets_shape):
raise ValueError('the shape of targets and true_targets are not the same'
'{} != {}'.format(targets_shape, true_targets_shape))
if weights is not None:
# Filtering targets and true_targets using weights.
weights_shape = weights.get_shape().as_list()
if np.any(weights_shape != targets_shape[0:2]):
raise ValueError('The first two elements of weights shape should match'
'target. {} != {}'.format(weights_shape,
targets_shape))
true_targets = tf.boolean_mask(true_targets, weights)
targets = tf.boolean_mask(targets, weights)
return tf.losses.mean_squared_error(tf.reshape(targets, [-1]),
tf.reshape(true_targets, [-1]))
def reward(self, obs, done, info):
raise NotImplementedError('reward is not implemented for this task')
|