File size: 18,750 Bytes
18ddfe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=line-too-long
# pyformat: disable
"""Train and eval for supervised navigation training.
For training:
python train_supervised_active_vision.py \
--mode='train' \
--logdir=$logdir/checkin_log_det/ \
--modality_types='det' \
--batch_size=8 \
--train_iters=200000 \
--lstm_cell_size=2048 \
--policy_fc_size=2048 \
--sequence_length=20 \
--max_eval_episode_length=100 \
--test_iters=194 \
--gin_config=envs/configs/active_vision_config.gin \
--gin_params='ActiveVisionDatasetEnv.dataset_root="$datadir"' \
--logtostderr
For testing:
python train_supervised_active_vision.py
--mode='eval' \
--logdir=$logdir/checkin_log_det/ \
--modality_types='det' \
--batch_size=8 \
--train_iters=200000 \
--lstm_cell_size=2048 \
--policy_fc_size=2048 \
--sequence_length=20 \
--max_eval_episode_length=100 \
--test_iters=194 \
--gin_config=envs/configs/active_vision_config.gin \
--gin_params='ActiveVisionDatasetEnv.dataset_root="$datadir"' \
--logtostderr
"""
import collections
import os
import time
from absl import app
from absl import flags
from absl import logging
import networkx as nx
import numpy as np
import tensorflow as tf
import gin
import embedders
import policies
import tasks
from envs import active_vision_dataset_env
from envs import task_env
slim = tf.contrib.slim
flags.DEFINE_string('logdir', '',
'Path to a directory to write summaries and checkpoints')
# Parameters controlling the training setup. In general one would not need to
# modify them.
flags.DEFINE_string('master', 'local',
'BNS name of the TensorFlow master, or local.')
flags.DEFINE_integer('task_id', 0,
'Task id of the replica running the training.')
flags.DEFINE_integer('ps_tasks', 0,
'Number of tasks in the ps job. If 0 no ps job is used.')
flags.DEFINE_integer('decay_steps', 1000,
'Number of steps for exponential decay.')
flags.DEFINE_float('learning_rate', 0.0001, 'Learning rate.')
flags.DEFINE_integer('batch_size', 8, 'Batch size.')
flags.DEFINE_integer('sequence_length', 20, 'sequence length')
flags.DEFINE_integer('train_iters', 200000, 'number of training iterations.')
flags.DEFINE_integer('save_summaries_secs', 300,
'number of seconds between saving summaries')
flags.DEFINE_integer('save_interval_secs', 300,
'numer of seconds between saving variables')
flags.DEFINE_integer('log_every_n_steps', 20, 'number of steps between logging')
flags.DEFINE_string('modality_types', '',
'modality names in _ separated format')
flags.DEFINE_string('conv_window_sizes', '8_4_3',
'conv window size in separated by _')
flags.DEFINE_string('conv_strides', '4_2_1', '')
flags.DEFINE_string('conv_channels', '8_16_16', '')
flags.DEFINE_integer('embedding_fc_size', 128,
'size of embedding for each modality')
flags.DEFINE_integer('obs_resolution', 64,
'resolution of the input observations')
flags.DEFINE_integer('lstm_cell_size', 2048, 'size of lstm cell size')
flags.DEFINE_integer('policy_fc_size', 2048,
'size of fully connected layers for policy part')
flags.DEFINE_float('weight_decay', 0.0002, 'weight decay')
flags.DEFINE_integer('goal_category_count', 5, 'number of goal categories')
flags.DEFINE_integer('action_size', 7, 'number of possible actions')
flags.DEFINE_integer('max_eval_episode_length', 100,
'maximum sequence length for evaluation.')
flags.DEFINE_enum('mode', 'train', ['train', 'eval'],
'indicates whether it is in training or evaluation')
flags.DEFINE_integer('test_iters', 194,
'number of iterations that the eval needs to be run')
flags.DEFINE_multi_string('gin_config', [],
'List of paths to a gin config files for the env.')
flags.DEFINE_multi_string('gin_params', [],
'Newline separated list of Gin parameter bindings.')
flags.DEFINE_string(
'resnet50_path', './resnet_v2_50_checkpoint/resnet_v2_50.ckpt', 'path to resnet50'
'checkpoint')
flags.DEFINE_bool('freeze_resnet_weights', True, '')
flags.DEFINE_string(
'eval_init_points_file_name', '',
'Name of the file that containts the initial locations and'
'worlds for each evalution point')
FLAGS = flags.FLAGS
TRAIN_WORLDS = [
'Home_001_1', 'Home_001_2', 'Home_002_1', 'Home_003_1', 'Home_003_2',
'Home_004_1', 'Home_004_2', 'Home_005_1', 'Home_005_2', 'Home_006_1',
'Home_010_1'
]
TEST_WORLDS = ['Home_011_1', 'Home_013_1', 'Home_016_1']
def create_modality_types():
"""Parses the modality_types and returns a list of task_env.ModalityType."""
if not FLAGS.modality_types:
raise ValueError('there needs to be at least one modality type')
modality_types = FLAGS.modality_types.split('_')
for x in modality_types:
if x not in ['image', 'sseg', 'det', 'depth']:
raise ValueError('invalid modality type: {}'.format(x))
conversion_dict = {
'image': task_env.ModalityTypes.IMAGE,
'sseg': task_env.ModalityTypes.SEMANTIC_SEGMENTATION,
'depth': task_env.ModalityTypes.DEPTH,
'det': task_env.ModalityTypes.OBJECT_DETECTION,
}
return [conversion_dict[k] for k in modality_types]
def create_task_io_config(
modality_types,
goal_category_count,
action_size,
sequence_length,
):
"""Generates task io config."""
shape_prefix = [sequence_length, FLAGS.obs_resolution, FLAGS.obs_resolution]
shapes = {
task_env.ModalityTypes.IMAGE: [sequence_length, 224, 224, 3],
task_env.ModalityTypes.DEPTH: shape_prefix + [
2,
],
task_env.ModalityTypes.SEMANTIC_SEGMENTATION: shape_prefix + [
1,
],
task_env.ModalityTypes.OBJECT_DETECTION: shape_prefix + [
90,
]
}
types = {k: tf.float32 for k in shapes}
types[task_env.ModalityTypes.IMAGE] = tf.uint8
inputs = collections.OrderedDict(
[[mtype, (types[mtype], shapes[mtype])] for mtype in modality_types])
inputs[task_env.ModalityTypes.GOAL] = (tf.float32,
[sequence_length, goal_category_count])
inputs[task_env.ModalityTypes.PREV_ACTION] = (tf.float32, [
sequence_length, action_size + 1
])
print inputs
return tasks.UnrolledTaskIOConfig(
inputs=inputs,
output=(tf.float32, [sequence_length, action_size]),
query=None)
def map_to_embedder(modality_type):
"""Maps modality_type to its corresponding embedder."""
if modality_type == task_env.ModalityTypes.PREV_ACTION:
return None
if modality_type == task_env.ModalityTypes.GOAL:
return embedders.IdentityEmbedder()
if modality_type == task_env.ModalityTypes.IMAGE:
return embedders.ResNet50Embedder()
conv_window_sizes = [int(x) for x in FLAGS.conv_window_sizes.split('_')]
conv_channels = [int(x) for x in FLAGS.conv_channels.split('_')]
conv_strides = [int(x) for x in FLAGS.conv_strides.split('_')]
params = tf.contrib.training.HParams(
to_one_hot=modality_type == task_env.ModalityTypes.SEMANTIC_SEGMENTATION,
one_hot_length=10,
conv_sizes=conv_window_sizes,
conv_strides=conv_strides,
conv_channels=conv_channels,
embedding_size=FLAGS.embedding_fc_size,
weight_decay_rate=FLAGS.weight_decay,
)
return embedders.SmallNetworkEmbedder(params)
def create_train_and_init_ops(policy, task):
"""Creates training ops given the arguments.
Args:
policy: the policy for the task.
task: the task instance.
Returns:
train_op: the op that needs to be runned at each step.
summaries_op: the summary op that is executed.
init_fn: the op that initializes the variables if there is no previous
checkpoint. If Resnet50 is not used in the model it is None, otherwise
it reads the weights from FLAGS.resnet50_path and sets the init_fn
to the op that initializes the ResNet50 with the pre-trained weights.
"""
assert isinstance(task, tasks.GotoStaticXNoExplorationTask)
assert isinstance(policy, policies.Policy)
inputs, _, gt_outputs, masks = task.tf_episode_batch(FLAGS.batch_size)
outputs, _ = policy.build(inputs, None)
loss = task.target_loss(gt_outputs, outputs, masks)
init_fn = None
# If resnet is added to the graph, init_fn should initialize resnet weights
# if there is no previous checkpoint.
variables_assign_dict = {}
vars_list = []
for v in slim.get_model_variables():
if v.name.find('resnet') >= 0:
if not FLAGS.freeze_resnet_weights:
vars_list.append(v)
variables_assign_dict[v.name[v.name.find('resnet'):-2]] = v
else:
vars_list.append(v)
global_step = tf.train.get_or_create_global_step()
learning_rate = tf.train.exponential_decay(
FLAGS.learning_rate,
global_step,
decay_steps=FLAGS.decay_steps,
decay_rate=0.98,
staircase=True)
optimizer = tf.train.AdamOptimizer(learning_rate)
train_op = slim.learning.create_train_op(
loss,
optimizer,
global_step=global_step,
variables_to_train=vars_list,
)
if variables_assign_dict:
init_fn = slim.assign_from_checkpoint_fn(
FLAGS.resnet50_path,
variables_assign_dict,
ignore_missing_vars=False)
scalar_summaries = {}
scalar_summaries['LR'] = learning_rate
scalar_summaries['loss'] = loss
for name, summary in scalar_summaries.iteritems():
tf.summary.scalar(name, summary)
return train_op, init_fn
def create_eval_ops(policy, config, possible_targets):
"""Creates the necessary ops for evaluation."""
inputs_feed = collections.OrderedDict([[
mtype,
tf.placeholder(config.inputs[mtype].type,
[1] + config.inputs[mtype].shape)
] for mtype in config.inputs])
inputs_feed[task_env.ModalityTypes.PREV_ACTION] = tf.placeholder(
tf.float32, [1, 1] + [
config.output.shape[-1] + 1,
])
prev_state_feed = [
tf.placeholder(
tf.float32, [1, FLAGS.lstm_cell_size], name='prev_state_{}'.format(i))
for i in range(2)
]
policy_outputs = policy.build(inputs_feed, prev_state_feed)
summary_feed = {}
for c in possible_targets + ['mean']:
summary_feed[c] = tf.placeholder(
tf.float32, [], name='eval_in_range_{}_input'.format(c))
tf.summary.scalar('eval_in_range_{}'.format(c), summary_feed[c])
return inputs_feed, prev_state_feed, policy_outputs, (tf.summary.merge_all(),
summary_feed)
def unroll_policy_for_eval(
sess,
env,
inputs_feed,
prev_state_feed,
policy_outputs,
number_of_steps,
output_folder,
):
"""unrolls the policy for testing.
Args:
sess: tf.Session
env: The environment.
inputs_feed: dictionary of placeholder for the input modalities.
prev_state_feed: placeholder for the input to the prev_state of the model.
policy_outputs: tensor that contains outputs of the policy.
number_of_steps: maximum number of unrolling steps.
output_folder: output_folder where the function writes a dictionary of
detailed information about the path. The dictionary keys are 'states' and
'distance'. The value for 'states' is the list of states that the agent
goes along the path. The value for 'distance' contains the length of
shortest path to the goal at each step.
Returns:
states: list of states along the path.
distance: list of distances along the path.
"""
prev_state = [
np.zeros((1, FLAGS.lstm_cell_size), dtype=np.float32) for _ in range(2)
]
prev_action = np.zeros((1, 1, FLAGS.action_size + 1), dtype=np.float32)
obs = env.reset()
distances_to_goal = []
states = []
unique_id = '{}_{}'.format(env.cur_image_id(), env.goal_string)
for _ in range(number_of_steps):
distances_to_goal.append(
np.min([
len(
nx.shortest_path(env.graph, env.pose_to_vertex(env.state()),
env.pose_to_vertex(target_view)))
for target_view in env.targets()
]))
states.append(env.state())
feed_dict = {inputs_feed[mtype]: [[obs[mtype]]] for mtype in inputs_feed}
feed_dict[prev_state_feed[0]] = prev_state[0]
feed_dict[prev_state_feed[1]] = prev_state[1]
action_values, prev_state = sess.run(policy_outputs, feed_dict=feed_dict)
chosen_action = np.argmax(action_values[0])
obs, _, done, info = env.step(np.int32(chosen_action))
prev_action[0][0][chosen_action] = 1.
prev_action[0][0][-1] = float(info['success'])
# If the agent chooses action stop or the number of steps exceeeded
# env._episode_length.
if done:
break
# logging.info('distance = %d, id = %s, #steps = %d', distances_to_goal[-1],
output_path = os.path.join(output_folder, unique_id + '.npy')
with tf.gfile.Open(output_path, 'w') as f:
print 'saving path information to {}'.format(output_path)
np.save(f, {'states': states, 'distance': distances_to_goal})
return states, distances_to_goal
def init(sequence_length, eval_init_points_file_name, worlds):
"""Initializes the common operations between train and test."""
modality_types = create_modality_types()
logging.info('modality types: %r', modality_types)
# negative reward_goal_range prevents the env from terminating early when the
# agent is close to the goal. The policy should keep the agent until the end
# of the 100 steps either through chosing stop action or oscilating around
# the target.
env = active_vision_dataset_env.ActiveVisionDatasetEnv(
modality_types=modality_types +
[task_env.ModalityTypes.GOAL, task_env.ModalityTypes.PREV_ACTION],
reward_goal_range=-1,
eval_init_points_file_name=eval_init_points_file_name,
worlds=worlds,
output_size=FLAGS.obs_resolution,
)
config = create_task_io_config(
modality_types=modality_types,
goal_category_count=FLAGS.goal_category_count,
action_size=FLAGS.action_size,
sequence_length=sequence_length,
)
task = tasks.GotoStaticXNoExplorationTask(env=env, config=config)
embedders_dict = {mtype: map_to_embedder(mtype) for mtype in config.inputs}
policy_params = tf.contrib.training.HParams(
lstm_state_size=FLAGS.lstm_cell_size,
fc_channels=FLAGS.policy_fc_size,
weight_decay=FLAGS.weight_decay,
target_embedding_size=FLAGS.embedding_fc_size,
)
policy = policies.LSTMPolicy(
modality_names=config.inputs.keys(),
embedders_dict=embedders_dict,
action_size=FLAGS.action_size,
params=policy_params,
max_episode_length=sequence_length)
return env, config, task, policy
def test():
"""Contains all the operations for testing policies."""
env, config, _, policy = init(1, 'all_init_configs', TEST_WORLDS)
inputs_feed, prev_state_feed, policy_outputs, summary_op = create_eval_ops(
policy, config, env.possible_targets)
sv = tf.train.Supervisor(logdir=FLAGS.logdir)
prev_checkpoint = None
with sv.managed_session(
start_standard_services=False,
config=tf.ConfigProto(allow_soft_placement=True)) as sess:
while not sv.should_stop():
while True:
new_checkpoint = tf.train.latest_checkpoint(FLAGS.logdir)
print 'new_checkpoint ', new_checkpoint
if not new_checkpoint:
time.sleep(1)
continue
if prev_checkpoint is None:
prev_checkpoint = new_checkpoint
break
if prev_checkpoint != new_checkpoint:
prev_checkpoint = new_checkpoint
break
else: # if prev_checkpoint == new_checkpoint, we have to wait more.
time.sleep(1)
checkpoint_step = int(new_checkpoint[new_checkpoint.rfind('-') + 1:])
sv.saver.restore(sess, new_checkpoint)
print '--------------------'
print 'evaluating checkpoint {}'.format(new_checkpoint)
folder_path = os.path.join(FLAGS.logdir, 'evals', str(checkpoint_step))
if not tf.gfile.Exists(folder_path):
tf.gfile.MakeDirs(folder_path)
eval_stats = {c: [] for c in env.possible_targets}
for test_iter in range(FLAGS.test_iters):
print 'evaluating {} of {}'.format(test_iter, FLAGS.test_iters)
_, distance_to_goal = unroll_policy_for_eval(
sess,
env,
inputs_feed,
prev_state_feed,
policy_outputs,
FLAGS.max_eval_episode_length,
folder_path,
)
print 'goal = {}'.format(env.goal_string)
eval_stats[env.goal_string].append(float(distance_to_goal[-1] <= 7))
eval_stats = {k: np.mean(v) for k, v in eval_stats.iteritems()}
eval_stats['mean'] = np.mean(eval_stats.values())
print eval_stats
feed_dict = {summary_op[1][c]: eval_stats[c] for c in eval_stats}
summary_str = sess.run(summary_op[0], feed_dict=feed_dict)
writer = sv.summary_writer
writer.add_summary(summary_str, checkpoint_step)
writer.flush()
def train():
_, _, task, policy = init(FLAGS.sequence_length, None, TRAIN_WORLDS)
print(FLAGS.save_summaries_secs)
print(FLAGS.save_interval_secs)
print(FLAGS.logdir)
with tf.device(
tf.train.replica_device_setter(ps_tasks=FLAGS.ps_tasks, merge_devices=True)):
train_op, init_fn = create_train_and_init_ops(policy=policy, task=task)
print(FLAGS.logdir)
slim.learning.train(
train_op=train_op,
init_fn=init_fn,
logdir=FLAGS.logdir,
is_chief=FLAGS.task_id == 0,
number_of_steps=FLAGS.train_iters,
save_summaries_secs=FLAGS.save_summaries_secs,
save_interval_secs=FLAGS.save_interval_secs,
session_config=tf.ConfigProto(allow_soft_placement=True),
)
def main(_):
gin.parse_config_files_and_bindings(FLAGS.gin_config, FLAGS.gin_params)
if FLAGS.mode == 'train':
train()
else:
test()
if __name__ == '__main__':
app.run(main)
|