File size: 8,384 Bytes
18ddfe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# Lint as: python2, python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for decoder_builder."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import numpy as np
import tensorflow.compat.v1 as tf

from google.protobuf import text_format
from object_detection.builders import decoder_builder
from object_detection.core import standard_fields as fields
from object_detection.dataset_tools import seq_example_util
from object_detection.protos import input_reader_pb2
from object_detection.utils import dataset_util
from object_detection.utils import test_case


def _get_labelmap_path():
  """Returns an absolute path to label map file."""
  parent_path = os.path.dirname(tf.resource_loader.get_data_files_path())
  return os.path.join(parent_path, 'data',
                      'pet_label_map.pbtxt')


class DecoderBuilderTest(test_case.TestCase):

  def _make_serialized_tf_example(self, has_additional_channels=False):
    image_tensor_np = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
    additional_channels_tensor_np = np.random.randint(
        255, size=(4, 5, 1)).astype(np.uint8)
    flat_mask = (4 * 5) * [1.0]
    def graph_fn(image_tensor):
      encoded_jpeg = tf.image.encode_jpeg(image_tensor)
      return encoded_jpeg
    encoded_jpeg = self.execute_cpu(graph_fn, [image_tensor_np])
    encoded_additional_channels_jpeg = self.execute_cpu(
        graph_fn, [additional_channels_tensor_np])

    features = {
        'image/source_id': dataset_util.bytes_feature('0'.encode()),
        'image/encoded': dataset_util.bytes_feature(encoded_jpeg),
        'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')),
        'image/height': dataset_util.int64_feature(4),
        'image/width': dataset_util.int64_feature(5),
        'image/object/bbox/xmin': dataset_util.float_list_feature([0.0]),
        'image/object/bbox/xmax': dataset_util.float_list_feature([1.0]),
        'image/object/bbox/ymin': dataset_util.float_list_feature([0.0]),
        'image/object/bbox/ymax': dataset_util.float_list_feature([1.0]),
        'image/object/class/label': dataset_util.int64_list_feature([2]),
        'image/object/mask': dataset_util.float_list_feature(flat_mask),
    }
    if has_additional_channels:
      additional_channels_key = 'image/additional_channels/encoded'
      features[additional_channels_key] = dataset_util.bytes_list_feature(
          [encoded_additional_channels_jpeg] * 2)
    example = tf.train.Example(features=tf.train.Features(feature=features))
    return example.SerializeToString()

  def _make_random_serialized_jpeg_images(self, num_frames, image_height,
                                          image_width):
    def graph_fn():
      images = tf.cast(tf.random.uniform(
          [num_frames, image_height, image_width, 3],
          maxval=256,
          dtype=tf.int32), dtype=tf.uint8)
      images_list = tf.unstack(images, axis=0)
      encoded_images = [tf.io.encode_jpeg(image) for image in images_list]
      return encoded_images
    return self.execute_cpu(graph_fn, [])

  def _make_serialized_tf_sequence_example(self):
    num_frames = 4
    image_height = 20
    image_width = 30
    image_source_ids = [str(i) for i in range(num_frames)]
    encoded_images = self._make_random_serialized_jpeg_images(
        num_frames, image_height, image_width)
    sequence_example_serialized = seq_example_util.make_sequence_example(
        dataset_name='video_dataset',
        video_id='video',
        encoded_images=encoded_images,
        image_height=image_height,
        image_width=image_width,
        image_source_ids=image_source_ids,
        image_format='JPEG',
        is_annotated=[[1], [1], [1], [1]],
        bboxes=[
            [[]],  # Frame 0.
            [[0., 0., 1., 1.]],  # Frame 1.
            [[0., 0., 1., 1.],
             [0.1, 0.1, 0.2, 0.2]],  # Frame 2.
            [[]],  # Frame 3.
        ],
        label_strings=[
            [],  # Frame 0.
            ['Abyssinian'],  # Frame 1.
            ['Abyssinian', 'american_bulldog'],  # Frame 2.
            [],  # Frame 3
        ]).SerializeToString()
    return sequence_example_serialized

  def test_build_tf_record_input_reader(self):
    input_reader_text_proto = 'tf_record_input_reader {}'
    input_reader_proto = input_reader_pb2.InputReader()
    text_format.Parse(input_reader_text_proto, input_reader_proto)

    decoder = decoder_builder.build(input_reader_proto)
    serialized_seq_example = self._make_serialized_tf_example()
    def graph_fn():
      tensor_dict = decoder.decode(serialized_seq_example)
      return (tensor_dict[fields.InputDataFields.image],
              tensor_dict[fields.InputDataFields.groundtruth_classes],
              tensor_dict[fields.InputDataFields.groundtruth_boxes])

    (image, groundtruth_classes,
     groundtruth_boxes) = self.execute_cpu(graph_fn, [])
    self.assertEqual((4, 5, 3), image.shape)
    self.assertAllEqual([2], groundtruth_classes)
    self.assertEqual((1, 4), groundtruth_boxes.shape)
    self.assertAllEqual([0.0, 0.0, 1.0, 1.0], groundtruth_boxes[0])

  def test_build_tf_record_input_reader_sequence_example(self):
    label_map_path = _get_labelmap_path()
    input_reader_text_proto = """
      input_type: TF_SEQUENCE_EXAMPLE
      tf_record_input_reader {}
    """
    input_reader_proto = input_reader_pb2.InputReader()
    input_reader_proto.label_map_path = label_map_path
    text_format.Parse(input_reader_text_proto, input_reader_proto)

    serialized_seq_example = self._make_serialized_tf_sequence_example()
    def graph_fn():
      decoder = decoder_builder.build(input_reader_proto)
      tensor_dict = decoder.decode(serialized_seq_example)
      return (tensor_dict[fields.InputDataFields.image],
              tensor_dict[fields.InputDataFields.groundtruth_classes],
              tensor_dict[fields.InputDataFields.groundtruth_boxes],
              tensor_dict[fields.InputDataFields.num_groundtruth_boxes])
    (actual_image, actual_groundtruth_classes, actual_groundtruth_boxes,
     actual_num_groundtruth_boxes) = self.execute_cpu(graph_fn, [])
    expected_groundtruth_classes = [[-1, -1], [1, -1], [1, 2], [-1, -1]]
    expected_groundtruth_boxes = [[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]],
                                  [[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]],
                                  [[0.0, 0.0, 1.0, 1.0], [0.1, 0.1, 0.2, 0.2]],
                                  [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]]
    expected_num_groundtruth_boxes = [0, 1, 2, 0]

    # Sequence example images are encoded.
    self.assertEqual((4,), actual_image.shape)
    self.assertAllEqual(expected_groundtruth_classes,
                        actual_groundtruth_classes)
    self.assertAllClose(expected_groundtruth_boxes,
                        actual_groundtruth_boxes)
    self.assertAllClose(
        expected_num_groundtruth_boxes, actual_num_groundtruth_boxes)

  def test_build_tf_record_input_reader_and_load_instance_masks(self):
    input_reader_text_proto = """
      load_instance_masks: true
      tf_record_input_reader {}
    """
    input_reader_proto = input_reader_pb2.InputReader()
    text_format.Parse(input_reader_text_proto, input_reader_proto)

    decoder = decoder_builder.build(input_reader_proto)
    serialized_seq_example = self._make_serialized_tf_example()
    def graph_fn():
      tensor_dict = decoder.decode(serialized_seq_example)
      return tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
    masks = self.execute_cpu(graph_fn, [])
    self.assertAllEqual((1, 4, 5), masks.shape)


if __name__ == '__main__':
  tf.test.main()