File size: 8,384 Bytes
18ddfe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
# Lint as: python2, python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for decoder_builder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import tensorflow.compat.v1 as tf
from google.protobuf import text_format
from object_detection.builders import decoder_builder
from object_detection.core import standard_fields as fields
from object_detection.dataset_tools import seq_example_util
from object_detection.protos import input_reader_pb2
from object_detection.utils import dataset_util
from object_detection.utils import test_case
def _get_labelmap_path():
"""Returns an absolute path to label map file."""
parent_path = os.path.dirname(tf.resource_loader.get_data_files_path())
return os.path.join(parent_path, 'data',
'pet_label_map.pbtxt')
class DecoderBuilderTest(test_case.TestCase):
def _make_serialized_tf_example(self, has_additional_channels=False):
image_tensor_np = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
additional_channels_tensor_np = np.random.randint(
255, size=(4, 5, 1)).astype(np.uint8)
flat_mask = (4 * 5) * [1.0]
def graph_fn(image_tensor):
encoded_jpeg = tf.image.encode_jpeg(image_tensor)
return encoded_jpeg
encoded_jpeg = self.execute_cpu(graph_fn, [image_tensor_np])
encoded_additional_channels_jpeg = self.execute_cpu(
graph_fn, [additional_channels_tensor_np])
features = {
'image/source_id': dataset_util.bytes_feature('0'.encode()),
'image/encoded': dataset_util.bytes_feature(encoded_jpeg),
'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')),
'image/height': dataset_util.int64_feature(4),
'image/width': dataset_util.int64_feature(5),
'image/object/bbox/xmin': dataset_util.float_list_feature([0.0]),
'image/object/bbox/xmax': dataset_util.float_list_feature([1.0]),
'image/object/bbox/ymin': dataset_util.float_list_feature([0.0]),
'image/object/bbox/ymax': dataset_util.float_list_feature([1.0]),
'image/object/class/label': dataset_util.int64_list_feature([2]),
'image/object/mask': dataset_util.float_list_feature(flat_mask),
}
if has_additional_channels:
additional_channels_key = 'image/additional_channels/encoded'
features[additional_channels_key] = dataset_util.bytes_list_feature(
[encoded_additional_channels_jpeg] * 2)
example = tf.train.Example(features=tf.train.Features(feature=features))
return example.SerializeToString()
def _make_random_serialized_jpeg_images(self, num_frames, image_height,
image_width):
def graph_fn():
images = tf.cast(tf.random.uniform(
[num_frames, image_height, image_width, 3],
maxval=256,
dtype=tf.int32), dtype=tf.uint8)
images_list = tf.unstack(images, axis=0)
encoded_images = [tf.io.encode_jpeg(image) for image in images_list]
return encoded_images
return self.execute_cpu(graph_fn, [])
def _make_serialized_tf_sequence_example(self):
num_frames = 4
image_height = 20
image_width = 30
image_source_ids = [str(i) for i in range(num_frames)]
encoded_images = self._make_random_serialized_jpeg_images(
num_frames, image_height, image_width)
sequence_example_serialized = seq_example_util.make_sequence_example(
dataset_name='video_dataset',
video_id='video',
encoded_images=encoded_images,
image_height=image_height,
image_width=image_width,
image_source_ids=image_source_ids,
image_format='JPEG',
is_annotated=[[1], [1], [1], [1]],
bboxes=[
[[]], # Frame 0.
[[0., 0., 1., 1.]], # Frame 1.
[[0., 0., 1., 1.],
[0.1, 0.1, 0.2, 0.2]], # Frame 2.
[[]], # Frame 3.
],
label_strings=[
[], # Frame 0.
['Abyssinian'], # Frame 1.
['Abyssinian', 'american_bulldog'], # Frame 2.
[], # Frame 3
]).SerializeToString()
return sequence_example_serialized
def test_build_tf_record_input_reader(self):
input_reader_text_proto = 'tf_record_input_reader {}'
input_reader_proto = input_reader_pb2.InputReader()
text_format.Parse(input_reader_text_proto, input_reader_proto)
decoder = decoder_builder.build(input_reader_proto)
serialized_seq_example = self._make_serialized_tf_example()
def graph_fn():
tensor_dict = decoder.decode(serialized_seq_example)
return (tensor_dict[fields.InputDataFields.image],
tensor_dict[fields.InputDataFields.groundtruth_classes],
tensor_dict[fields.InputDataFields.groundtruth_boxes])
(image, groundtruth_classes,
groundtruth_boxes) = self.execute_cpu(graph_fn, [])
self.assertEqual((4, 5, 3), image.shape)
self.assertAllEqual([2], groundtruth_classes)
self.assertEqual((1, 4), groundtruth_boxes.shape)
self.assertAllEqual([0.0, 0.0, 1.0, 1.0], groundtruth_boxes[0])
def test_build_tf_record_input_reader_sequence_example(self):
label_map_path = _get_labelmap_path()
input_reader_text_proto = """
input_type: TF_SEQUENCE_EXAMPLE
tf_record_input_reader {}
"""
input_reader_proto = input_reader_pb2.InputReader()
input_reader_proto.label_map_path = label_map_path
text_format.Parse(input_reader_text_proto, input_reader_proto)
serialized_seq_example = self._make_serialized_tf_sequence_example()
def graph_fn():
decoder = decoder_builder.build(input_reader_proto)
tensor_dict = decoder.decode(serialized_seq_example)
return (tensor_dict[fields.InputDataFields.image],
tensor_dict[fields.InputDataFields.groundtruth_classes],
tensor_dict[fields.InputDataFields.groundtruth_boxes],
tensor_dict[fields.InputDataFields.num_groundtruth_boxes])
(actual_image, actual_groundtruth_classes, actual_groundtruth_boxes,
actual_num_groundtruth_boxes) = self.execute_cpu(graph_fn, [])
expected_groundtruth_classes = [[-1, -1], [1, -1], [1, 2], [-1, -1]]
expected_groundtruth_boxes = [[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]],
[[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]],
[[0.0, 0.0, 1.0, 1.0], [0.1, 0.1, 0.2, 0.2]],
[[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]]]
expected_num_groundtruth_boxes = [0, 1, 2, 0]
# Sequence example images are encoded.
self.assertEqual((4,), actual_image.shape)
self.assertAllEqual(expected_groundtruth_classes,
actual_groundtruth_classes)
self.assertAllClose(expected_groundtruth_boxes,
actual_groundtruth_boxes)
self.assertAllClose(
expected_num_groundtruth_boxes, actual_num_groundtruth_boxes)
def test_build_tf_record_input_reader_and_load_instance_masks(self):
input_reader_text_proto = """
load_instance_masks: true
tf_record_input_reader {}
"""
input_reader_proto = input_reader_pb2.InputReader()
text_format.Parse(input_reader_text_proto, input_reader_proto)
decoder = decoder_builder.build(input_reader_proto)
serialized_seq_example = self._make_serialized_tf_example()
def graph_fn():
tensor_dict = decoder.decode(serialized_seq_example)
return tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
masks = self.execute_cpu(graph_fn, [])
self.assertAllEqual((1, 4, 5), masks.shape)
if __name__ == '__main__':
tf.test.main()
|