File size: 9,978 Bytes
18ddfe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Open Images Challenge Evaluation

The Object Detection API is currently supporting several evaluation metrics used
in the
[Open Images Challenge 2018](https://storage.googleapis.com/openimages/web/challenge.html)
and
[Open Images Challenge 2019](https://storage.googleapis.com/openimages/web/challenge2019.html).
In addition, several data processing tools are available. Detailed instructions
on using the tools for each track are available below.

**NOTE:** all data links are updated to the Open Images Challenge 2019.

## Object Detection Track

The
[Object Detection metric](https://storage.googleapis.com/openimages/web/evaluation.html#object_detection_eval)
protocol requires a pre-processing of the released data to ensure correct
evaluation. The released data contains only leaf-most bounding box annotations
and image-level labels. The evaluation metric implementation is available in the
class `OpenImagesChallengeEvaluator`.

1.  Download
    [class hierarchy of Open Images Detection Challenge 2019](https://storage.googleapis.com/openimages/challenge_2019/challenge-2019-label500-hierarchy.json)
    in JSON format.
2.  Download
    [ground-truth boundling boxes](https://storage.googleapis.com/openimages/challenge_2019/challenge-2019-validation-detection-bbox.csv)
    and
    [image-level labels](https://storage.googleapis.com/openimages/challenge_2019/challenge-2019-validation-detection-human-imagelabels.csv).
3.  Run the following command to create hierarchical expansion of the bounding
    boxes and image-level label annotations:

```
HIERARCHY_FILE=/path/to/challenge-2019-label500-hierarchy.json
BOUNDING_BOXES=/path/to/challenge-2019-validation-detection-bbox
IMAGE_LABELS=/path/to/challenge-2019-validation-detection-human-imagelabels

python object_detection/dataset_tools/oid_hierarchical_labels_expansion.py \
    --json_hierarchy_file=${HIERARCHY_FILE} \
    --input_annotations=${BOUNDING_BOXES}.csv \
    --output_annotations=${BOUNDING_BOXES}_expanded.csv \
    --annotation_type=1

python object_detection/dataset_tools/oid_hierarchical_labels_expansion.py \
    --json_hierarchy_file=${HIERARCHY_FILE} \
    --input_annotations=${IMAGE_LABELS}.csv \
    --output_annotations=${IMAGE_LABELS}_expanded.csv \
    --annotation_type=2
```

1.  If you are not using Tensorflow, you can run evaluation directly using your
    algorithm's output and generated ground-truth files. {value=4}

After step 3 you produced the ground-truth files suitable for running 'OID
Challenge Object Detection Metric 2019' evaluation. To run the evaluation, use
the following command:

```
INPUT_PREDICTIONS=/path/to/detection_predictions.csv
OUTPUT_METRICS=/path/to/output/metrics/file

python models/research/object_detection/metrics/oid_challenge_evaluation.py \
    --input_annotations_boxes=${BOUNDING_BOXES}_expanded.csv \
    --input_annotations_labels=${IMAGE_LABELS}_expanded.csv \
    --input_class_labelmap=object_detection/data/oid_object_detection_challenge_500_label_map.pbtxt \
    --input_predictions=${INPUT_PREDICTIONS} \
    --output_metrics=${OUTPUT_METRICS} \
```

Note that predictions file must contain the following keys:
ImageID,LabelName,Score,XMin,XMax,YMin,YMax

For the Object Detection Track, the participants will be ranked on:

-   "OpenImagesDetectionChallenge_Precision/[email protected]"

To use evaluation within Tensorflow training, use metric name
`oid_challenge_detection_metrics` in the evaluation config.

## Instance Segmentation Track

The
[Instance Segmentation metric](https://storage.googleapis.com/openimages/web/evaluation.html#instance_segmentation_eval)
can be directly evaluated using the ground-truth data and model predictions. The
evaluation metric implementation is available in the class
`OpenImagesChallengeEvaluator`.

1.  Download
    [class hierarchy of Open Images Instance Segmentation Challenge 2019](https://storage.googleapis.com/openimages/challenge_2019/challenge-2019-label300-segmentable-hierarchy.json)
    in JSON format.
2.  Download
    [ground-truth bounding boxes](https://storage.googleapis.com/openimages/challenge_2019/challenge-2019-validation-segmentation-bbox.csv)
    and
    [image-level labels](https://storage.googleapis.com/openimages/challenge_2019/challenge-2019-validation-segmentation-labels.csv).
3.  Download instance segmentation files for the validation set (see
    [Open Images Challenge Downloads page](https://storage.googleapis.com/openimages/web/challenge2019_downloads.html)).
    The download consists of a set of .zip archives containing binary .png
    masks.
    Those should be transformed into a single CSV file in the format:

    ImageID,LabelName,ImageWidth,ImageHeight,XMin,YMin,XMax,YMax,IsGroupOf,Mask
    where Mask is MS COCO RLE encoding, compressed with zip, and re-coded with
    base64 encoding of a binary mask stored in .png file. See an example
    implementation of the encoding function
    [here](https://gist.github.com/pculliton/209398a2a52867580c6103e25e55d93c).

1.  Run the following command to create hierarchical expansion of the instance
    segmentation, bounding boxes and image-level label annotations: {value=4}

```
HIERARCHY_FILE=/path/to/challenge-2019-label300-hierarchy.json
BOUNDING_BOXES=/path/to/challenge-2019-validation-detection-bbox
IMAGE_LABELS=/path/to/challenge-2019-validation-detection-human-imagelabels

python object_detection/dataset_tools/oid_hierarchical_labels_expansion.py \
    --json_hierarchy_file=${HIERARCHY_FILE} \
    --input_annotations=${BOUNDING_BOXES}.csv \
    --output_annotations=${BOUNDING_BOXES}_expanded.csv \
    --annotation_type=1

python object_detection/dataset_tools/oid_hierarchical_labels_expansion.py \
    --json_hierarchy_file=${HIERARCHY_FILE} \
    --input_annotations=${IMAGE_LABELS}.csv \
    --output_annotations=${IMAGE_LABELS}_expanded.csv \
    --annotation_type=2

python object_detection/dataset_tools/oid_hierarchical_labels_expansion.py \
    --json_hierarchy_file=${HIERARCHY_FILE} \
    --input_annotations=${INSTANCE_SEGMENTATIONS}.csv \
    --output_annotations=${INSTANCE_SEGMENTATIONS}_expanded.csv \
    --annotation_type=1
```

1.  If you are not using Tensorflow, you can run evaluation directly using your
    algorithm's output and generated ground-truth files. {value=4}

```
INPUT_PREDICTIONS=/path/to/instance_segmentation_predictions.csv
OUTPUT_METRICS=/path/to/output/metrics/file

python models/research/object_detection/metrics/oid_challenge_evaluation.py \
    --input_annotations_boxes=${BOUNDING_BOXES}_expanded.csv \
    --input_annotations_labels=${IMAGE_LABELS}_expanded.csv \
    --input_class_labelmap=object_detection/data/oid_object_detection_challenge_500_label_map.pbtxt \
    --input_predictions=${INPUT_PREDICTIONS} \
    --input_annotations_segm=${INSTANCE_SEGMENTATIONS}_expanded.csv
    --output_metrics=${OUTPUT_METRICS} \
```

Note that predictions file must contain the following keys:
ImageID,ImageWidth,ImageHeight,LabelName,Score,Mask

Mask must be encoded the same way as groundtruth masks.

For the Instance Segmentation Track, the participants will be ranked on:

-   "OpenImagesInstanceSegmentationChallenge_Precision/[email protected]"

## Visual Relationships Detection Track

The
[Visual Relationships Detection metrics](https://storage.googleapis.com/openimages/web/evaluation.html#visual_relationships_eval)
can be directly evaluated using the ground-truth data and model predictions. The
evaluation metric implementation is available in the class
`VRDRelationDetectionEvaluator`,`VRDPhraseDetectionEvaluator`.

1.  Download the ground-truth
    [visual relationships annotations](https://storage.googleapis.com/openimages/challenge_2019/challenge-2019-validation-vrd.csv)
    and
    [image-level labels](https://storage.googleapis.com/openimages/challenge_2019/challenge-2019-validation-vrd-labels.csv).
2.  Run the follwing command to produce final metrics:

```
INPUT_ANNOTATIONS_BOXES=/path/to/challenge-2018-train-vrd.csv
INPUT_ANNOTATIONS_LABELS=/path/to/challenge-2018-train-vrd-labels.csv
INPUT_PREDICTIONS=/path/to/predictions.csv
INPUT_CLASS_LABELMAP=/path/to/oid_object_detection_challenge_500_label_map.pbtxt
INPUT_RELATIONSHIP_LABELMAP=/path/to/relationships_labelmap.pbtxt
OUTPUT_METRICS=/path/to/output/metrics/file

echo "item { name: '/m/02gy9n' id: 602 display_name: 'Transparent' }
item { name: '/m/05z87' id: 603 display_name: 'Plastic' }
item { name: '/m/0dnr7' id: 604 display_name: '(made of)Textile' }
item { name: '/m/04lbp' id: 605 display_name: '(made of)Leather' }
item { name: '/m/083vt' id: 606 display_name: 'Wooden'}
">>${INPUT_CLASS_LABELMAP}

echo "item { name: 'at' id: 1 display_name: 'at' }
item { name: 'on' id: 2 display_name: 'on (top of)' }
item { name: 'holds' id: 3 display_name: 'holds' }
item { name: 'plays' id: 4 display_name: 'plays' }
item { name: 'interacts_with' id: 5 display_name: 'interacts with' }
item { name: 'wears' id: 6 display_name: 'wears' }
item { name: 'is' id: 7 display_name: 'is' }
item { name: 'inside_of' id: 8 display_name: 'inside of' }
item { name: 'under' id: 9 display_name: 'under' }
item { name: 'hits' id: 10 display_name: 'hits' }
"> ${INPUT_RELATIONSHIP_LABELMAP}

python object_detection/metrics/oid_vrd_challenge_evaluation.py \
    --input_annotations_boxes=${INPUT_ANNOTATIONS_BOXES} \
    --input_annotations_labels=${INPUT_ANNOTATIONS_LABELS} \
    --input_predictions=${INPUT_PREDICTIONS} \
    --input_class_labelmap=${INPUT_CLASS_LABELMAP} \
    --input_relationship_labelmap=${INPUT_RELATIONSHIP_LABELMAP} \
    --output_metrics=${OUTPUT_METRICS}
```

Note that predictions file must contain the following keys:
ImageID,LabelName1,LabelName2,RelationshipLabel,Score,XMin1,XMax1,YMin1,YMax1,XMin2,XMax2,YMin2,YMax2

The participants of the challenge will be evaluated by weighted average of the following three metrics:

- "VRDMetric_Relationships[email protected]"
- "VRDMetric_Relationships_Recall@[email protected]"
- "VRDMetric_Phrases[email protected]"