File size: 6,587 Bytes
18ddfe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Data utils for CIFAR-10 and CIFAR-100."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
import cPickle
import os
import augmentation_transforms
import numpy as np
import policies as found_policies
import tensorflow as tf


# pylint:disable=logging-format-interpolation


class DataSet(object):
  """Dataset object that produces augmented training and eval data."""

  def __init__(self, hparams):
    self.hparams = hparams
    self.epochs = 0
    self.curr_train_index = 0

    all_labels = []

    self.good_policies = found_policies.good_policies()

    # Determine how many databatched to load
    num_data_batches_to_load = 5
    total_batches_to_load = num_data_batches_to_load
    train_batches_to_load = total_batches_to_load
    assert hparams.train_size + hparams.validation_size <= 50000
    if hparams.eval_test:
      total_batches_to_load += 1
    # Determine how many images we have loaded
    total_dataset_size = 10000 * num_data_batches_to_load
    train_dataset_size = total_dataset_size
    if hparams.eval_test:
      total_dataset_size += 10000

    if hparams.dataset == 'cifar10':
      all_data = np.empty((total_batches_to_load, 10000, 3072), dtype=np.uint8)
    elif hparams.dataset == 'cifar100':
      assert num_data_batches_to_load == 5
      all_data = np.empty((1, 50000, 3072), dtype=np.uint8)
      if hparams.eval_test:
        test_data = np.empty((1, 10000, 3072), dtype=np.uint8)
    if hparams.dataset == 'cifar10':
      tf.logging.info('Cifar10')
      datafiles = [
          'data_batch_1', 'data_batch_2', 'data_batch_3', 'data_batch_4',
          'data_batch_5']

      datafiles = datafiles[:train_batches_to_load]
      if hparams.eval_test:
        datafiles.append('test_batch')
      num_classes = 10
    elif hparams.dataset == 'cifar100':
      datafiles = ['train']
      if hparams.eval_test:
        datafiles.append('test')
      num_classes = 100
    else:
      raise NotImplementedError('Unimplemented dataset: ', hparams.dataset)
    if hparams.dataset != 'test':
      for file_num, f in enumerate(datafiles):
        d = unpickle(os.path.join(hparams.data_path, f))
        if f == 'test':
          test_data[0] = copy.deepcopy(d['data'])
          all_data = np.concatenate([all_data, test_data], axis=1)
        else:
          all_data[file_num] = copy.deepcopy(d['data'])
        if hparams.dataset == 'cifar10':
          labels = np.array(d['labels'])
        else:
          labels = np.array(d['fine_labels'])
        nsamples = len(labels)
        for idx in range(nsamples):
          all_labels.append(labels[idx])

    all_data = all_data.reshape(total_dataset_size, 3072)
    all_data = all_data.reshape(-1, 3, 32, 32)
    all_data = all_data.transpose(0, 2, 3, 1).copy()
    all_data = all_data / 255.0
    mean = augmentation_transforms.MEANS
    std = augmentation_transforms.STDS
    tf.logging.info('mean:{}    std: {}'.format(mean, std))

    all_data = (all_data - mean) / std
    all_labels = np.eye(num_classes)[np.array(all_labels, dtype=np.int32)]
    assert len(all_data) == len(all_labels)
    tf.logging.info(
        'In CIFAR10 loader, number of images: {}'.format(len(all_data)))

    # Break off test data
    if hparams.eval_test:
      self.test_images = all_data[train_dataset_size:]
      self.test_labels = all_labels[train_dataset_size:]

    # Shuffle the rest of the data
    all_data = all_data[:train_dataset_size]
    all_labels = all_labels[:train_dataset_size]
    np.random.seed(0)
    perm = np.arange(len(all_data))
    np.random.shuffle(perm)
    all_data = all_data[perm]
    all_labels = all_labels[perm]

    # Break into train and val
    train_size, val_size = hparams.train_size, hparams.validation_size
    assert 50000 >= train_size + val_size
    self.train_images = all_data[:train_size]
    self.train_labels = all_labels[:train_size]
    self.val_images = all_data[train_size:train_size + val_size]
    self.val_labels = all_labels[train_size:train_size + val_size]
    self.num_train = self.train_images.shape[0]

  def next_batch(self):
    """Return the next minibatch of augmented data."""
    next_train_index = self.curr_train_index + self.hparams.batch_size
    if next_train_index > self.num_train:
      # Increase epoch number
      epoch = self.epochs + 1
      self.reset()
      self.epochs = epoch
    batched_data = (
        self.train_images[self.curr_train_index:
                          self.curr_train_index + self.hparams.batch_size],
        self.train_labels[self.curr_train_index:
                          self.curr_train_index + self.hparams.batch_size])
    final_imgs = []

    images, labels = batched_data
    for data in images:
      epoch_policy = self.good_policies[np.random.choice(
          len(self.good_policies))]
      final_img = augmentation_transforms.apply_policy(
          epoch_policy, data)
      final_img = augmentation_transforms.random_flip(
          augmentation_transforms.zero_pad_and_crop(final_img, 4))
      # Apply cutout
      final_img = augmentation_transforms.cutout_numpy(final_img)
      final_imgs.append(final_img)
    batched_data = (np.array(final_imgs, np.float32), labels)
    self.curr_train_index += self.hparams.batch_size
    return batched_data

  def reset(self):
    """Reset training data and index into the training data."""
    self.epochs = 0
    # Shuffle the training data
    perm = np.arange(self.num_train)
    np.random.shuffle(perm)
    assert self.num_train == self.train_images.shape[
        0], 'Error incorrect shuffling mask'
    self.train_images = self.train_images[perm]
    self.train_labels = self.train_labels[perm]
    self.curr_train_index = 0


def unpickle(f):
  tf.logging.info('loading file: {}'.format(f))
  fo = tf.gfile.Open(f, 'r')
  d = cPickle.load(fo)
  fo.close()
  return d