File size: 5,218 Bytes
18ddfe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

r"""Generaly Utilities.
"""

import numpy as np, cPickle, os, time
from six.moves import xrange
import src.file_utils as fu
import logging

class Timer():
  def __init__(self):
    self.calls = 0.
    self.start_time = 0.
    self.time_per_call = 0.
    self.total_time = 0.
    self.last_log_time = 0.

  def tic(self):
    self.start_time = time.time()

  def toc(self, average=True, log_at=-1, log_str='', type='calls'):
    if self.start_time == 0:
      logging.error('Timer not started by calling tic().')
    t = time.time()
    diff = time.time() - self.start_time
    self.total_time += diff
    self.calls += 1.
    self.time_per_call = self.total_time/self.calls

    if type == 'calls' and log_at > 0 and np.mod(self.calls, log_at) == 0:
      _ = []
      logging.info('%s: %f seconds.', log_str, self.time_per_call)
    elif type == 'time' and log_at > 0 and t - self.last_log_time >= log_at:
      _ = []
      logging.info('%s: %f seconds.', log_str, self.time_per_call)
      self.last_log_time = t

    if average:
      return self.time_per_call
    else:
      return diff

class Foo(object):
  def __init__(self, **kwargs):
    self.__dict__.update(kwargs)
  def __str__(self):
    str_ = ''
    for v in vars(self).keys():
      a = getattr(self, v)
      if True: #isinstance(v, object):
        str__ = str(a)
        str__ = str__.replace('\n', '\n  ')
      else:
        str__ = str(a)
      str_ += '{:s}: {:s}'.format(v, str__)
      str_ += '\n'
    return str_


def dict_equal(dict1, dict2):
  assert(set(dict1.keys()) == set(dict2.keys())), "Sets of keys between 2 dictionaries are different."
  for k in dict1.keys():
    assert(type(dict1[k]) == type(dict2[k])), "Type of key '{:s}' if different.".format(k)
    if type(dict1[k]) == np.ndarray:
      assert(dict1[k].dtype == dict2[k].dtype), "Numpy Type of key '{:s}' if different.".format(k)
      assert(np.allclose(dict1[k], dict2[k])), "Value for key '{:s}' do not match.".format(k)
    else:
      assert(dict1[k] == dict2[k]), "Value for key '{:s}' do not match.".format(k)
  return True

def subplot(plt, Y_X, sz_y_sz_x = (10, 10)):
  Y,X = Y_X
  sz_y, sz_x = sz_y_sz_x
  plt.rcParams['figure.figsize'] = (X*sz_x, Y*sz_y)
  fig, axes = plt.subplots(Y, X)
  plt.subplots_adjust(wspace=0.1, hspace=0.1)
  return fig, axes

def tic_toc_print(interval, string):
  global tic_toc_print_time_old
  if 'tic_toc_print_time_old' not in globals():
    tic_toc_print_time_old = time.time()
    print(string)
  else:
    new_time = time.time()
    if new_time - tic_toc_print_time_old > interval:
      tic_toc_print_time_old = new_time;
      print(string)

def mkdir_if_missing(output_dir):
  if not fu.exists(output_dir):
    fu.makedirs(output_dir)

def save_variables(pickle_file_name, var, info, overwrite = False):
  if fu.exists(pickle_file_name) and overwrite == False:
    raise Exception('{:s} exists and over write is false.'.format(pickle_file_name))
  # Construct the dictionary
  assert(type(var) == list); assert(type(info) == list);
  d = {}
  for i in xrange(len(var)):
    d[info[i]] = var[i]
  with fu.fopen(pickle_file_name, 'w') as f:
    cPickle.dump(d, f, cPickle.HIGHEST_PROTOCOL)

def load_variables(pickle_file_name):
  if fu.exists(pickle_file_name):
    with fu.fopen(pickle_file_name, 'r') as f:
      d = cPickle.load(f)
    return d
  else:
    raise Exception('{:s} does not exists.'.format(pickle_file_name))

def voc_ap(rec, prec):
  rec = rec.reshape((-1,1))
  prec = prec.reshape((-1,1))
  z = np.zeros((1,1))
  o = np.ones((1,1))
  mrec = np.vstack((z, rec, o))
  mpre = np.vstack((z, prec, z))
  for i in range(len(mpre)-2, -1, -1):
    mpre[i] = max(mpre[i], mpre[i+1])

  I = np.where(mrec[1:] != mrec[0:-1])[0]+1;
  ap = 0;
  for i in I:
    ap = ap + (mrec[i] - mrec[i-1])*mpre[i];
  return ap

def tight_imshow_figure(plt, figsize=None):
  fig = plt.figure(figsize=figsize)
  ax = plt.Axes(fig, [0,0,1,1])
  ax.set_axis_off()
  fig.add_axes(ax)
  return fig, ax

def calc_pr(gt, out, wt=None):
  if wt is None:
    wt = np.ones((gt.size,1))

  gt = gt.astype(np.float64).reshape((-1,1))
  wt = wt.astype(np.float64).reshape((-1,1))
  out = out.astype(np.float64).reshape((-1,1))

  gt = gt*wt
  tog = np.concatenate([gt, wt, out], axis=1)*1.
  ind = np.argsort(tog[:,2], axis=0)[::-1]
  tog = tog[ind,:]
  cumsumsortgt = np.cumsum(tog[:,0])
  cumsumsortwt = np.cumsum(tog[:,1])
  prec = cumsumsortgt / cumsumsortwt
  rec = cumsumsortgt / np.sum(tog[:,0])

  ap = voc_ap(rec, prec)
  return ap, rec, prec