File size: 3,869 Bytes
18ddfe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
![TensorFlow Requirement: 1.x](https://img.shields.io/badge/TensorFlow%20Requirement-1.x-brightgreen)
![TensorFlow 2 Not Supported](https://img.shields.io/badge/TensorFlow%202%20Not%20Supported-%E2%9C%95-red.svg)

Code for several RL algorithms used in the following papers:
* "Improving Policy Gradient by Exploring Under-appreciated Rewards" by
Ofir Nachum, Mohammad Norouzi, and Dale Schuurmans.
* "Bridging the Gap Between Value and Policy Based Reinforcement Learning" by
Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans.
* "Trust-PCL: An Off-Policy Trust Region Method for Continuous Control" by
Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans.

Available algorithms:
* Actor Critic
* TRPO
* PCL
* Unified PCL
* Trust-PCL
* PCL + Constraint Trust Region (un-published)
* REINFORCE
* UREX

Requirements:
* TensorFlow (see http://www.tensorflow.org for how to install/upgrade)
* OpenAI Gym (see http://gym.openai.com/docs)
* NumPy (see http://www.numpy.org/)
* SciPy (see http://www.scipy.org/)

Quick Start:

Run UREX on a simple environment:

```
python trainer.py --logtostderr --batch_size=400 --env=DuplicatedInput-v0 \
  --validation_frequency=25 --tau=0.1 --clip_norm=50 \
  --num_samples=10 --objective=urex
```

Run REINFORCE on a simple environment:

```
python trainer.py --logtostderr --batch_size=400 --env=DuplicatedInput-v0 \
  --validation_frequency=25 --tau=0.01 --clip_norm=50 \
  --num_samples=10 --objective=reinforce
```

Run PCL on a simple environment:

```
python trainer.py --logtostderr --batch_size=400 --env=DuplicatedInput-v0 \
  --validation_frequency=25 --tau=0.025 --rollout=10 --critic_weight=1.0 \
  --gamma=0.9 --clip_norm=10 --replay_buffer_freq=1 --objective=pcl
```

Run PCL with expert trajectories on a simple environment:

```
python trainer.py --logtostderr --batch_size=400 --env=DuplicatedInput-v0 \
  --validation_frequency=25 --tau=0.025 --rollout=10 --critic_weight=1.0 \
  --gamma=0.9 --clip_norm=10 --replay_buffer_freq=1 --objective=pcl \
  --num_expert_paths=10
```

Run Mujoco task with TRPO:

```
python trainer.py --logtostderr --batch_size=25 --env=HalfCheetah-v1 \
  --validation_frequency=5 --rollout=10 --gamma=0.995 \
  --max_step=1000 --cutoff_agent=1000 \
  --objective=trpo --norecurrent --internal_dim=64 --trust_region_p \
  --max_divergence=0.05 --value_opt=best_fit --critic_weight=0.0 \
```

To run Mujoco task using Trust-PCL (off-policy) use the below command.
It should work well across all environments, given that you
search sufficiently among

(1) max_divergence (0.001, 0.0005, 0.002 are good values),

(2) rollout (1, 5, 10 are good values),

(3) tf_seed (need to average over enough random seeds).

```
python trainer.py --logtostderr --batch_size=1 --env=HalfCheetah-v1 \
  --validation_frequency=250 --rollout=1 --critic_weight=1.0 --gamma=0.995 \
  --clip_norm=40 --learning_rate=0.0001 --replay_buffer_freq=1 \
  --replay_buffer_size=5000 --replay_buffer_alpha=0.001 --norecurrent \
  --objective=pcl --max_step=10 --cutoff_agent=1000 --tau=0.0 --eviction=fifo \
  --max_divergence=0.001 --internal_dim=256 --replay_batch_size=64 \
  --nouse_online_batch --batch_by_steps --value_hidden_layers=2 \
  --update_eps_lambda --nounify_episodes --target_network_lag=0.99 \
  --sample_from=online --clip_adv=1 --prioritize_by=step --num_steps=1000000 \
  --noinput_prev_actions --use_target_values --tf_seed=57
```

Run Mujoco task with PCL constraint trust region:

```
python trainer.py --logtostderr --batch_size=25 --env=HalfCheetah-v1 \
  --validation_frequency=5 --tau=0.001 --rollout=50 --gamma=0.99 \
  --max_step=1000 --cutoff_agent=1000 \
  --objective=pcl --norecurrent --internal_dim=64 --trust_region_p \
  --max_divergence=0.01 --value_opt=best_fit --critic_weight=0.0 \
  --tau_decay=0.1 --tau_start=0.1
```


Maintained by Ofir Nachum (ofirnachum).