File size: 6,416 Bytes
18ddfe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for masked language model network."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from tensorflow.python.keras import keras_parameterized # pylint: disable=g-direct-tensorflow-import
from official.nlp.modeling.layers import masked_lm
from official.nlp.modeling.networks import transformer_encoder
# This decorator runs the test in V1, V2-Eager, and V2-Functional mode. It
# guarantees forward compatibility of this code for the V2 switchover.
@keras_parameterized.run_all_keras_modes
class MaskedLMTest(keras_parameterized.TestCase):
def create_layer(self,
vocab_size,
sequence_length,
hidden_size,
output='predictions',
xformer_stack=None):
# First, create a transformer stack that we can use to get the LM's
# vocabulary weight.
if xformer_stack is None:
xformer_stack = transformer_encoder.TransformerEncoder(
vocab_size=vocab_size,
num_layers=1,
sequence_length=sequence_length,
hidden_size=hidden_size,
num_attention_heads=4,
)
# Create a maskedLM from the transformer stack.
test_layer = masked_lm.MaskedLM(
embedding_table=xformer_stack.get_embedding_table(),
output=output)
return test_layer
def test_layer_creation(self):
vocab_size = 100
sequence_length = 32
hidden_size = 64
num_predictions = 21
test_layer = self.create_layer(
vocab_size=vocab_size,
sequence_length=sequence_length,
hidden_size=hidden_size)
# Make sure that the output tensor of the masked LM is the right shape.
lm_input_tensor = tf.keras.Input(shape=(sequence_length, hidden_size))
masked_positions = tf.keras.Input(shape=(num_predictions,), dtype=tf.int32)
output = test_layer(lm_input_tensor, masked_positions=masked_positions)
expected_output_shape = [None, num_predictions, vocab_size]
self.assertEqual(expected_output_shape, output.shape.as_list())
def test_layer_invocation_with_external_logits(self):
vocab_size = 100
sequence_length = 32
hidden_size = 64
num_predictions = 21
xformer_stack = transformer_encoder.TransformerEncoder(
vocab_size=vocab_size,
num_layers=1,
sequence_length=sequence_length,
hidden_size=hidden_size,
num_attention_heads=4,
)
test_layer = self.create_layer(
vocab_size=vocab_size,
sequence_length=sequence_length,
hidden_size=hidden_size,
xformer_stack=xformer_stack,
output='predictions')
logit_layer = self.create_layer(
vocab_size=vocab_size,
sequence_length=sequence_length,
hidden_size=hidden_size,
xformer_stack=xformer_stack,
output='logits')
# Create a model from the masked LM layer.
lm_input_tensor = tf.keras.Input(shape=(sequence_length, hidden_size))
masked_positions = tf.keras.Input(shape=(num_predictions,), dtype=tf.int32)
output = test_layer(lm_input_tensor, masked_positions)
logit_output = logit_layer(lm_input_tensor, masked_positions)
logit_output = tf.keras.layers.Activation(tf.nn.log_softmax)(logit_output)
logit_layer.set_weights(test_layer.get_weights())
model = tf.keras.Model([lm_input_tensor, masked_positions], output)
logits_model = tf.keras.Model(([lm_input_tensor, masked_positions]),
logit_output)
# Invoke the masked LM on some fake data to make sure there are no runtime
# errors in the code.
batch_size = 3
lm_input_data = 10 * np.random.random_sample(
(batch_size, sequence_length, hidden_size))
masked_position_data = np.random.randint(
sequence_length, size=(batch_size, num_predictions))
# ref_outputs = model.predict([lm_input_data, masked_position_data])
# outputs = logits_model.predict([lm_input_data, masked_position_data])
ref_outputs = model([lm_input_data, masked_position_data])
outputs = logits_model([lm_input_data, masked_position_data])
# Ensure that the tensor shapes are correct.
expected_output_shape = (batch_size, num_predictions, vocab_size)
self.assertEqual(expected_output_shape, ref_outputs.shape)
self.assertEqual(expected_output_shape, outputs.shape)
self.assertAllClose(ref_outputs, outputs)
def test_layer_invocation(self):
vocab_size = 100
sequence_length = 32
hidden_size = 64
num_predictions = 21
test_layer = self.create_layer(
vocab_size=vocab_size,
sequence_length=sequence_length,
hidden_size=hidden_size)
# Create a model from the masked LM layer.
lm_input_tensor = tf.keras.Input(shape=(sequence_length, hidden_size))
masked_positions = tf.keras.Input(shape=(num_predictions,), dtype=tf.int32)
output = test_layer(lm_input_tensor, masked_positions)
model = tf.keras.Model([lm_input_tensor, masked_positions], output)
# Invoke the masked LM on some fake data to make sure there are no runtime
# errors in the code.
batch_size = 3
lm_input_data = 10 * np.random.random_sample(
(batch_size, sequence_length, hidden_size))
masked_position_data = np.random.randint(
2, size=(batch_size, num_predictions))
_ = model.predict([lm_input_data, masked_position_data])
def test_unknown_output_type_fails(self):
with self.assertRaisesRegex(ValueError, 'Unknown `output` value "bad".*'):
_ = self.create_layer(
vocab_size=8, sequence_length=8, hidden_size=8, output='bad')
if __name__ == '__main__':
tf.test.main()
|