File size: 6,416 Bytes
18ddfe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for masked language model network."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf

from tensorflow.python.keras import keras_parameterized  # pylint: disable=g-direct-tensorflow-import

from official.nlp.modeling.layers import masked_lm
from official.nlp.modeling.networks import transformer_encoder


# This decorator runs the test in V1, V2-Eager, and V2-Functional mode. It
# guarantees forward compatibility of this code for the V2 switchover.
@keras_parameterized.run_all_keras_modes
class MaskedLMTest(keras_parameterized.TestCase):

  def create_layer(self,
                   vocab_size,
                   sequence_length,
                   hidden_size,
                   output='predictions',
                   xformer_stack=None):
    # First, create a transformer stack that we can use to get the LM's
    # vocabulary weight.
    if xformer_stack is None:
      xformer_stack = transformer_encoder.TransformerEncoder(
          vocab_size=vocab_size,
          num_layers=1,
          sequence_length=sequence_length,
          hidden_size=hidden_size,
          num_attention_heads=4,
      )

    # Create a maskedLM from the transformer stack.
    test_layer = masked_lm.MaskedLM(
        embedding_table=xformer_stack.get_embedding_table(),
        output=output)
    return test_layer

  def test_layer_creation(self):
    vocab_size = 100
    sequence_length = 32
    hidden_size = 64
    num_predictions = 21
    test_layer = self.create_layer(
        vocab_size=vocab_size,
        sequence_length=sequence_length,
        hidden_size=hidden_size)

    # Make sure that the output tensor of the masked LM is the right shape.
    lm_input_tensor = tf.keras.Input(shape=(sequence_length, hidden_size))
    masked_positions = tf.keras.Input(shape=(num_predictions,), dtype=tf.int32)
    output = test_layer(lm_input_tensor, masked_positions=masked_positions)

    expected_output_shape = [None, num_predictions, vocab_size]
    self.assertEqual(expected_output_shape, output.shape.as_list())

  def test_layer_invocation_with_external_logits(self):
    vocab_size = 100
    sequence_length = 32
    hidden_size = 64
    num_predictions = 21
    xformer_stack = transformer_encoder.TransformerEncoder(
        vocab_size=vocab_size,
        num_layers=1,
        sequence_length=sequence_length,
        hidden_size=hidden_size,
        num_attention_heads=4,
    )
    test_layer = self.create_layer(
        vocab_size=vocab_size,
        sequence_length=sequence_length,
        hidden_size=hidden_size,
        xformer_stack=xformer_stack,
        output='predictions')
    logit_layer = self.create_layer(
        vocab_size=vocab_size,
        sequence_length=sequence_length,
        hidden_size=hidden_size,
        xformer_stack=xformer_stack,
        output='logits')

    # Create a model from the masked LM layer.
    lm_input_tensor = tf.keras.Input(shape=(sequence_length, hidden_size))
    masked_positions = tf.keras.Input(shape=(num_predictions,), dtype=tf.int32)
    output = test_layer(lm_input_tensor, masked_positions)
    logit_output = logit_layer(lm_input_tensor, masked_positions)
    logit_output = tf.keras.layers.Activation(tf.nn.log_softmax)(logit_output)
    logit_layer.set_weights(test_layer.get_weights())
    model = tf.keras.Model([lm_input_tensor, masked_positions], output)
    logits_model = tf.keras.Model(([lm_input_tensor, masked_positions]),
                                  logit_output)

    # Invoke the masked LM on some fake data to make sure there are no runtime
    # errors in the code.
    batch_size = 3
    lm_input_data = 10 * np.random.random_sample(
        (batch_size, sequence_length, hidden_size))
    masked_position_data = np.random.randint(
        sequence_length, size=(batch_size, num_predictions))
    # ref_outputs = model.predict([lm_input_data, masked_position_data])
    # outputs = logits_model.predict([lm_input_data, masked_position_data])
    ref_outputs = model([lm_input_data, masked_position_data])
    outputs = logits_model([lm_input_data, masked_position_data])

    # Ensure that the tensor shapes are correct.
    expected_output_shape = (batch_size, num_predictions, vocab_size)
    self.assertEqual(expected_output_shape, ref_outputs.shape)
    self.assertEqual(expected_output_shape, outputs.shape)
    self.assertAllClose(ref_outputs, outputs)

  def test_layer_invocation(self):
    vocab_size = 100
    sequence_length = 32
    hidden_size = 64
    num_predictions = 21
    test_layer = self.create_layer(
        vocab_size=vocab_size,
        sequence_length=sequence_length,
        hidden_size=hidden_size)

    # Create a model from the masked LM layer.
    lm_input_tensor = tf.keras.Input(shape=(sequence_length, hidden_size))
    masked_positions = tf.keras.Input(shape=(num_predictions,), dtype=tf.int32)
    output = test_layer(lm_input_tensor, masked_positions)
    model = tf.keras.Model([lm_input_tensor, masked_positions], output)

    # Invoke the masked LM on some fake data to make sure there are no runtime
    # errors in the code.
    batch_size = 3
    lm_input_data = 10 * np.random.random_sample(
        (batch_size, sequence_length, hidden_size))
    masked_position_data = np.random.randint(
        2, size=(batch_size, num_predictions))
    _ = model.predict([lm_input_data, masked_position_data])

  def test_unknown_output_type_fails(self):
    with self.assertRaisesRegex(ValueError, 'Unknown `output` value "bad".*'):
      _ = self.create_layer(
          vocab_size=8, sequence_length=8, hidden_size=8, output='bad')


if __name__ == '__main__':
  tf.test.main()