File size: 6,908 Bytes
18ddfe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Multi-channel Attention."""
# pylint: disable=g-classes-have-attributes

from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

import math

import tensorflow as tf
from official.modeling import tf_utils
from official.nlp.modeling.layers import attention
from official.nlp.modeling.layers import dense_einsum
from official.nlp.modeling.layers import masked_softmax


class VotingAttention(tf.keras.layers.Layer):
  """Voting Attention layer.

  Arguments:
    num_heads: the number of attention heads.
    head_size: per-head hidden size.
    kernel_initializer: Initializer for dense layer kernels.
    bias_initializer: Initializer for dense layer biases.
    kernel_regularizer: Regularizer for dense layer kernels.
    bias_regularizer: Regularizer for dense layer biases.
    activity_regularizer: Regularizer for dense layer activity.
    kernel_constraint: Constraint for dense layer kernels.
    bias_constraint: Constraint for dense layer kernels.
  """

  def __init__(self,
               num_heads,
               head_size,
               kernel_initializer="glorot_uniform",
               bias_initializer="zeros",
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
               **kwargs):
    super(VotingAttention, self).__init__(**kwargs)
    self._num_heads = num_heads
    self._head_size = head_size
    self._kernel_initializer = tf.keras.initializers.get(kernel_initializer)
    self._bias_initializer = tf.keras.initializers.get(bias_initializer)
    self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
    self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
    self._kernel_constraint = tf.keras.constraints.get(kernel_constraint)
    self._bias_constraint = tf.keras.constraints.get(bias_constraint)

  def build(self, unused_input_shapes):
    self._query_dense = dense_einsum.DenseEinsum(
        output_shape=(self._num_heads, self._head_size),
        kernel_initializer=self._kernel_initializer,
        bias_initializer=self._bias_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
        bias_constraint=self._bias_constraint,
        dtype=self.dtype,
        name="encdocatt_query")
    self._key_dense = dense_einsum.DenseEinsum(
        output_shape=(self._num_heads, self._head_size),
        kernel_initializer=self._kernel_initializer,
        bias_initializer=self._bias_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
        bias_constraint=self._bias_constraint,
        dtype=self.dtype,
        name="encdocatt_key")
    super(VotingAttention, self).build(unused_input_shapes)

  def call(self, encoder_outputs, doc_attention_mask):
    num_docs = tf_utils.get_shape_list(encoder_outputs, expected_rank=[4])[1]
    cls_embeddings = encoder_outputs[:, :, 0, :]
    key = self._key_dense(cls_embeddings)
    query = self._query_dense(cls_embeddings)
    doc_attention_mask = tf.cast(doc_attention_mask, tf.float32)

    key = tf.einsum("BANH,BA->BANH", key, doc_attention_mask)
    query = tf.einsum("BANH,BA->BANH", query, doc_attention_mask)
    attention_matrix = tf.einsum("BXNH,BYNH->BNXY", query, key)
    mask = tf.ones([num_docs, num_docs])
    mask = tf.linalg.set_diag(mask, tf.zeros(num_docs))
    attention_matrix = tf.einsum("BNXY,XY->BNXY", attention_matrix, mask)
    doc_attention_probs = tf.einsum("BNAY->BNA", attention_matrix)
    doc_attention_probs = tf.einsum("BNA->BA", doc_attention_probs)
    infadder = (1.0 - doc_attention_mask) * -100000.0
    return tf.nn.softmax(doc_attention_probs + infadder)


class MultiChannelAttention(attention.MultiHeadAttention):
  """Multi-channel Attention layer.

  Introduced in: https://arxiv.org/abs/2001.09386. Expects multiple
  cross-attention target sequences.
  """

  def build(self, input_shape):
    super(MultiChannelAttention, self).build(input_shape)
    self._masked_softmax = masked_softmax.MaskedSoftmax(mask_expansion_axes=[2])

  def call(self, inputs, attention_mask=None):
    from_tensor = inputs[0]
    to_tensor = inputs[1]
    doc_attention_probs = inputs[2]

    # Scalar dimensions referenced here:
    #   B = batch size (number of stories)
    #   A = num_docs (number of docs)
    #   F = `from_tensor` sequence length
    #   T = `to_tensor` sequence length
    #   N = `num_attention_heads`
    #   H = `size_per_head`
    # `query_tensor` = [B, F, N ,H]
    query_tensor = self._query_dense(from_tensor)

    # `key_tensor` = [B, A, T, N, H]
    key_tensor = self._key_dense(to_tensor)

    # `value_tensor` = [B, A, T, N, H]
    value_tensor = self._value_dense(to_tensor)

    # Take the dot product between "query" and "key" to get the raw
    # attention scores.
    attention_scores = tf.einsum("BATNH,BFNH->BANFT", key_tensor, query_tensor)
    attention_scores = tf.multiply(attention_scores,
                                   1.0 / math.sqrt(float(self._key_size)))

    # Normalize the attention scores to probabilities.
    # `attention_probs` = [B, A, N, F, T]
    attention_probs = self._masked_softmax(attention_scores, attention_mask)

    # This is actually dropping out entire tokens to attend to, which might
    # seem a bit unusual, but is taken from the original Transformer paper.
    attention_probs = self._dropout_layer(attention_probs)

    # `context_layer` = [B, F, N, H]
    context_layer = tf.einsum("BANFT,BATNH->BAFNH", attention_probs,
                              value_tensor)
    attention_output = tf.einsum("BNFA,BAFNH->BFNH", doc_attention_probs,
                                 context_layer)
    attention_output = self._output_dense(attention_output)
    return attention_output