File size: 27,301 Bytes
18ddfe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 |
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Beam search to find the translated sequence with the highest probability.
Source implementation from Tensor2Tensor:
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/beam_search.py
"""
import numpy as np
import tensorflow.compat.v1 as tf
from tensorflow.python.util import nest
def inf(dtype):
"""Returns a value close to infinity, but is still finite in `dtype`.
This is useful to get a very large value that is still zero when multiplied by
zero. The floating-point "Inf" value is NaN when multiplied by zero.
Args:
dtype: A dtype. The returned value will be finite when casted to this dtype.
Returns:
A very large value.
"""
if dtype == "float32" or dtype == "bfloat16":
return 1e7
elif dtype == "float16":
# Disable no-member lint error, as the linter thinks np.float16 does not
# exist for some reason.
return np.finfo(np.float16).max # pylint: disable=no-member
else:
raise AssertionError('Invalid dtype: %s' % dtype)
class _StateKeys(object):
"""Keys to dictionary storing the state of the beam search loop."""
# Variable storing the loop index.
CUR_INDEX = "CUR_INDEX"
# Top sequences that are alive for each batch item. Alive sequences are ones
# that have not generated an EOS token. Sequences that reach EOS are marked as
# finished and moved to the FINISHED_SEQ tensor.
# Has shape [batch_size, beam_size, CUR_INDEX + 1]
ALIVE_SEQ = "ALIVE_SEQ"
# Log probabilities of each alive sequence. Shape [batch_size, beam_size]
ALIVE_LOG_PROBS = "ALIVE_LOG_PROBS"
# Dictionary of cached values for each alive sequence. The cache stores
# the encoder output, attention bias, and the decoder attention output from
# the previous iteration.
ALIVE_CACHE = "ALIVE_CACHE"
# Top finished sequences for each batch item.
# Has shape [batch_size, beam_size, CUR_INDEX + 1]. Sequences that are
# shorter than CUR_INDEX + 1 are padded with 0s.
FINISHED_SEQ = "FINISHED_SEQ"
# Scores for each finished sequence. Score = log probability / length norm
# Shape [batch_size, beam_size]
FINISHED_SCORES = "FINISHED_SCORES"
# Flags indicating which sequences in the finished sequences are finished.
# At the beginning, all of the sequences in FINISHED_SEQ are filler values.
# True -> finished sequence, False -> filler. Shape [batch_size, beam_size]
FINISHED_FLAGS = "FINISHED_FLAGS"
class SequenceBeamSearch(object):
"""Implementation of beam search loop."""
def __init__(self,
symbols_to_logits_fn,
vocab_size,
batch_size,
beam_size,
alpha,
max_decode_length,
eos_id,
padded_decode,
dtype=tf.float32):
"""Initialize sequence beam search.
Args:
symbols_to_logits_fn: A function to provide logits, which is the
interface to the Transformer model. The passed in arguments are:
ids -> A tensor with shape [batch_size * beam_size, index].
index -> A scalar.
cache -> A nested dictionary of tensors [batch_size * beam_size, ...].
The function must return a tuple of logits and the updated cache:
logits -> A tensor with shape [batch * beam_size, vocab_size].
updated cache -> A nested dictionary with the same structure as the
input cache.
vocab_size: An integer, the size of the vocabulary, used for topk
computation.
batch_size: An integer, the decode batch size.
beam_size: An integer, number of beams for beam search.
alpha: A float, defining the strength of length normalization.
max_decode_length: An integer, the maximum number of steps to decode
a sequence.
eos_id: An integer. ID of end of sentence token.
padded_decode: A bool, indicating if max_sequence_length padding is used
for beam search.
dtype: A tensorflow data type used for score computation. The default is
tf.float32.
"""
self.symbols_to_logits_fn = symbols_to_logits_fn
self.vocab_size = vocab_size
self.batch_size = batch_size
self.beam_size = beam_size
self.alpha = alpha
self.max_decode_length = max_decode_length
self.eos_id = eos_id
self.padded_decode = padded_decode
self.dtype = tf.as_dtype(dtype)
def search(self, initial_ids, initial_cache):
"""Beam search for sequences with highest scores."""
state, state_shapes = self._create_initial_state(initial_ids, initial_cache)
finished_state = tf.while_loop(
self._continue_search, self._search_step, loop_vars=[state],
shape_invariants=[state_shapes], parallel_iterations=1, back_prop=False)
finished_state = finished_state[0]
alive_seq = finished_state[_StateKeys.ALIVE_SEQ]
alive_log_probs = finished_state[_StateKeys.ALIVE_LOG_PROBS]
finished_seq = finished_state[_StateKeys.FINISHED_SEQ]
finished_scores = finished_state[_StateKeys.FINISHED_SCORES]
finished_flags = finished_state[_StateKeys.FINISHED_FLAGS]
# Account for corner case where there are no finished sequences for a
# particular batch item. In that case, return alive sequences for that batch
# item.
finished_seq = tf.where(
tf.reduce_any(finished_flags, 1), finished_seq, alive_seq)
finished_scores = tf.where(
tf.reduce_any(finished_flags, 1), finished_scores, alive_log_probs)
return finished_seq, finished_scores
def _create_initial_state(self, initial_ids, initial_cache):
"""Return initial state dictionary and its shape invariants.
Args:
initial_ids: initial ids to pass into the symbols_to_logits_fn.
int tensor with shape [batch_size, 1]
initial_cache: dictionary storing values to be passed into the
symbols_to_logits_fn.
Returns:
state and shape invariant dictionaries with keys from _StateKeys
"""
for key, value in initial_cache.items():
for inner_value in nest.flatten(value):
if inner_value.dtype != self.dtype:
raise TypeError(
"initial_cache element for key '%s' has dtype %s that does not "
"match SequenceBeamSearch's dtype of %s. Value: %s" %
(key, value.dtype.name, self.dtype.name, inner_value))
# Current loop index (starts at 0)
cur_index = tf.constant(0)
# Create alive sequence with shape [batch_size, beam_size, 1]
alive_seq = _expand_to_beam_size(initial_ids, self.beam_size)
alive_seq = tf.expand_dims(alive_seq, axis=2)
if self.padded_decode:
alive_seq = tf.tile(alive_seq, [1, 1, self.max_decode_length + 1])
# Create tensor for storing initial log probabilities.
# Assume initial_ids are prob 1.0
initial_log_probs = tf.constant(
[[0.] + [-float("inf")] * (self.beam_size - 1)], dtype=self.dtype)
alive_log_probs = tf.tile(initial_log_probs, [self.batch_size, 1])
# Expand all values stored in the dictionary to the beam size, so that each
# beam has a separate cache.
alive_cache = nest.map_structure(
lambda t: _expand_to_beam_size(t, self.beam_size), initial_cache)
# Initialize tensor storing finished sequences with filler values.
finished_seq = tf.zeros(tf.shape(alive_seq), tf.int32)
# Set scores of the initial finished seqs to negative infinity.
finished_scores = tf.ones([self.batch_size, self.beam_size],
dtype=self.dtype) * -inf(self.dtype)
# Initialize finished flags with all False values.
finished_flags = tf.zeros([self.batch_size, self.beam_size], tf.bool)
# Create state dictionary
state = {
_StateKeys.CUR_INDEX: cur_index,
_StateKeys.ALIVE_SEQ: alive_seq,
_StateKeys.ALIVE_LOG_PROBS: alive_log_probs,
_StateKeys.ALIVE_CACHE: alive_cache,
_StateKeys.FINISHED_SEQ: finished_seq,
_StateKeys.FINISHED_SCORES: finished_scores,
_StateKeys.FINISHED_FLAGS: finished_flags
}
# Create state invariants for each value in the state dictionary. Each
# dimension must be a constant or None. A None dimension means either:
# 1) the dimension's value is a tensor that remains the same but may
# depend on the input sequence to the model (e.g. batch size).
# 2) the dimension may have different values on different iterations.
if self.padded_decode:
state_shape_invariants = {
_StateKeys.CUR_INDEX:
tf.TensorShape([]),
_StateKeys.ALIVE_SEQ:
tf.TensorShape(
[self.batch_size, self.beam_size,
self.max_decode_length + 1]),
_StateKeys.ALIVE_LOG_PROBS:
tf.TensorShape([self.batch_size, self.beam_size]),
_StateKeys.ALIVE_CACHE:
nest.map_structure(_get_shape, alive_cache),
_StateKeys.FINISHED_SEQ:
tf.TensorShape(
[self.batch_size, self.beam_size,
self.max_decode_length + 1]),
_StateKeys.FINISHED_SCORES:
tf.TensorShape([self.batch_size, self.beam_size]),
_StateKeys.FINISHED_FLAGS:
tf.TensorShape([self.batch_size, self.beam_size])
}
else:
state_shape_invariants = {
_StateKeys.CUR_INDEX:
tf.TensorShape([]),
_StateKeys.ALIVE_SEQ:
tf.TensorShape([None, self.beam_size, None]),
_StateKeys.ALIVE_LOG_PROBS:
tf.TensorShape([None, self.beam_size]),
_StateKeys.ALIVE_CACHE:
nest.map_structure(_get_shape_keep_last_dim, alive_cache),
_StateKeys.FINISHED_SEQ:
tf.TensorShape([None, self.beam_size, None]),
_StateKeys.FINISHED_SCORES:
tf.TensorShape([None, self.beam_size]),
_StateKeys.FINISHED_FLAGS:
tf.TensorShape([None, self.beam_size])
}
return state, state_shape_invariants
def _continue_search(self, state):
"""Return whether to continue the search loop.
The loops should terminate when
1) when decode length has been reached, or
2) when the worst score in the finished sequences is better than the best
score in the alive sequences (i.e. the finished sequences are provably
unchanging)
Args:
state: A dictionary with the current loop state.
Returns:
Bool tensor with value True if loop should continue, False if loop should
terminate.
"""
i = state[_StateKeys.CUR_INDEX]
alive_log_probs = state[_StateKeys.ALIVE_LOG_PROBS]
finished_scores = state[_StateKeys.FINISHED_SCORES]
finished_flags = state[_StateKeys.FINISHED_FLAGS]
not_at_max_decode_length = tf.less(i, self.max_decode_length)
# Calculate largest length penalty (the larger penalty, the better score).
max_length_norm = _length_normalization(self.alpha, self.max_decode_length,
dtype=self.dtype)
# Get the best possible scores from alive sequences.
best_alive_scores = alive_log_probs[:, 0] / max_length_norm
# Compute worst score in finished sequences for each batch element
finished_scores *= tf.cast(finished_flags,
self.dtype) # set filler scores to zero
lowest_finished_scores = tf.reduce_min(finished_scores, axis=1)
# If there are no finished sequences in a batch element, then set the lowest
# finished score to -INF for that element.
finished_batches = tf.reduce_any(finished_flags, 1)
lowest_finished_scores += ((1.0 -
tf.cast(finished_batches, self.dtype)) *
-inf(self.dtype))
worst_finished_score_better_than_best_alive_score = tf.reduce_all(
tf.greater(lowest_finished_scores, best_alive_scores)
)
return tf.logical_and(
not_at_max_decode_length,
tf.logical_not(worst_finished_score_better_than_best_alive_score)
)
def _search_step(self, state):
"""Beam search loop body.
Grow alive sequences by a single ID. Sequences that have reached the EOS
token are marked as finished. The alive and finished sequences with the
highest log probabilities and scores are returned.
A sequence's finished score is calculating by dividing the log probability
by the length normalization factor. Without length normalization, the
search is more likely to return shorter sequences.
Args:
state: A dictionary with the current loop state.
Returns:
new state dictionary.
"""
# Grow alive sequences by one token.
new_seq, new_log_probs, topk_ids, new_cache = self._grow_alive_seq(state)
new_finished_flags = tf.equal(topk_ids, self.eos_id)
# Collect top beam_size alive sequences
alive_state = self._get_new_alive_state(new_seq, new_log_probs,
new_finished_flags, new_cache)
# Combine newly finished sequences with existing finished sequences, and
# collect the top k scoring sequences.
finished_state = self._get_new_finished_state(state, new_seq, new_log_probs,
new_finished_flags)
# Increment loop index and create new state dictionary
new_state = {_StateKeys.CUR_INDEX: state[_StateKeys.CUR_INDEX] + 1}
new_state.update(alive_state)
new_state.update(finished_state)
return [new_state]
def _grow_alive_seq(self, state):
"""Grow alive sequences by one token, and collect top 2*beam_size sequences.
2*beam_size sequences are collected because some sequences may have reached
the EOS token. 2*beam_size ensures that at least beam_size sequences are
still alive.
Args:
state: A dictionary with the current loop state.
Returns:
Tuple of
(Top 2*beam_size sequences [batch_size, 2 * beam_size, cur_index + 1],
Scores of returned sequences [batch_size, 2 * beam_size],
New alive cache, for each of the 2 * beam_size sequences)
"""
i = state[_StateKeys.CUR_INDEX]
alive_seq = state[_StateKeys.ALIVE_SEQ]
alive_log_probs = state[_StateKeys.ALIVE_LOG_PROBS]
alive_cache = state[_StateKeys.ALIVE_CACHE]
beams_to_keep = 2 * self.beam_size
# Get logits for the next candidate IDs for the alive sequences. Get the new
# cache values at the same time.
if self.padded_decode:
flat_ids = tf.reshape(
tf.slice(alive_seq, [0, 0, i], [self.batch_size, self.beam_size, 1]),
[self.batch_size * self.beam_size, -1])
else:
flat_ids = _flatten_beam_dim(alive_seq) # [batch_size * beam_size]
flat_cache = nest.map_structure(_flatten_beam_dim, alive_cache)
flat_logits, flat_cache = self.symbols_to_logits_fn(flat_ids, i, flat_cache)
# Unflatten logits to shape [batch_size, beam_size, vocab_size]
logits = _unflatten_beam_dim(flat_logits, self.batch_size, self.beam_size)
new_cache = nest.map_structure(
lambda t: _unflatten_beam_dim(t, self.batch_size, self.beam_size),
flat_cache)
# Convert logits to normalized log probs
candidate_log_probs = _log_prob_from_logits(logits)
# Calculate new log probabilities if each of the alive sequences were
# extended # by the the candidate IDs.
# Shape [batch_size, beam_size, vocab_size]
log_probs = candidate_log_probs + tf.expand_dims(alive_log_probs, axis=2)
# Each batch item has beam_size * vocab_size candidate sequences. For each
# batch item, get the k candidates with the highest log probabilities.
flat_log_probs = tf.reshape(log_probs,
[-1, self.beam_size * self.vocab_size])
topk_log_probs, topk_indices = tf.nn.top_k(flat_log_probs, k=beams_to_keep)
# Extract the alive sequences that generate the highest log probabilities
# after being extended.
topk_beam_indices = topk_indices // self.vocab_size
topk_seq, new_cache = _gather_beams(
[alive_seq, new_cache], topk_beam_indices, self.batch_size,
beams_to_keep)
# Append the most probable IDs to the topk sequences
topk_ids = topk_indices % self.vocab_size
if self.padded_decode:
topk_seq = tf.transpose(topk_seq, perm=[2, 0, 1])
# TODO(b/145533236, hongkuny): Reverts once TF fix the validation.
topk_seq = tf.tensor_scatter_nd_update(topk_seq, [[i + 1]],
tf.expand_dims(topk_ids, axis=0))
topk_seq = tf.transpose(topk_seq, perm=[1, 2, 0])
else:
topk_seq = tf.concat([topk_seq, tf.expand_dims(topk_ids, axis=2)], axis=2)
return topk_seq, topk_log_probs, topk_ids, new_cache
def _get_new_alive_state(self, new_seq, new_log_probs, new_finished_flags,
new_cache):
"""Gather the top k sequences that are still alive.
Args:
new_seq: New sequences generated by growing the current alive sequences
int32 tensor with shape [batch_size, 2 * beam_size, cur_index + 1]
new_log_probs: Log probabilities of new sequences float32 tensor with
shape [batch_size, beam_size]
new_finished_flags: A boolean Tensor indicates which sequences are live
inside the beam.
new_cache: Dict of cached values for each sequence.
Returns:
Dictionary with alive keys from _StateKeys:
{Top beam_size sequences that are still alive (don't end with eos_id)
Log probabilities of top alive sequences
Dict cache storing decoder states for top alive sequences}
"""
# To prevent finished sequences from being considered, set log probs to -inf
new_log_probs += tf.cast(new_finished_flags, self.dtype) * -inf(self.dtype)
top_alive_seq, top_alive_log_probs, top_alive_cache = _gather_topk_beams(
[new_seq, new_log_probs, new_cache], new_log_probs, self.batch_size,
self.beam_size)
return {
_StateKeys.ALIVE_SEQ: top_alive_seq,
_StateKeys.ALIVE_LOG_PROBS: top_alive_log_probs,
_StateKeys.ALIVE_CACHE: top_alive_cache
}
def _get_new_finished_state(self, state, new_seq, new_log_probs,
new_finished_flags):
"""Combine new and old finished sequences, and gather the top k sequences.
Args:
state: A dictionary with the current loop state.
new_seq: New sequences generated by growing the current alive sequences
int32 tensor with shape [batch_size, beam_size, i + 1]
new_log_probs: Log probabilities of new sequences float32 tensor with
shape [batch_size, beam_size]
new_finished_flags: A boolean Tensor indicates which sequences are live
inside the beam.
Returns:
Dictionary with finished keys from _StateKeys:
{Top beam_size finished sequences based on score,
Scores of finished sequences,
Finished flags of finished sequences}
"""
i = state[_StateKeys.CUR_INDEX]
finished_seq = state[_StateKeys.FINISHED_SEQ]
finished_scores = state[_StateKeys.FINISHED_SCORES]
finished_flags = state[_StateKeys.FINISHED_FLAGS]
# First append a column of 0-ids to finished_seq to increment the length.
# New shape of finished_seq: [batch_size, beam_size, i + 1]
if not self.padded_decode:
finished_seq = tf.concat([
finished_seq,
tf.zeros([self.batch_size, self.beam_size, 1], tf.int32)
],
axis=2)
# Calculate new seq scores from log probabilities.
length_norm = _length_normalization(self.alpha, i + 1, dtype=self.dtype)
new_scores = new_log_probs / length_norm
# Set the scores of the still-alive seq in new_seq to large negative values.
new_scores += ((1. - tf.cast(new_finished_flags, self.dtype)) *
-inf(self.dtype))
# Combine sequences, scores, and flags.
finished_seq = tf.concat([finished_seq, new_seq], axis=1)
finished_scores = tf.concat([finished_scores, new_scores], axis=1)
finished_flags = tf.concat([finished_flags, new_finished_flags], axis=1)
# Return the finished sequences with the best scores.
top_finished_seq, top_finished_scores, top_finished_flags = (
_gather_topk_beams([finished_seq, finished_scores, finished_flags],
finished_scores, self.batch_size, self.beam_size))
return {
_StateKeys.FINISHED_SEQ: top_finished_seq,
_StateKeys.FINISHED_SCORES: top_finished_scores,
_StateKeys.FINISHED_FLAGS: top_finished_flags
}
def sequence_beam_search(
symbols_to_logits_fn, initial_ids, initial_cache, vocab_size, beam_size,
alpha, max_decode_length, eos_id, padded_decode=False):
"""Search for sequence of subtoken ids with the largest probability.
Args:
symbols_to_logits_fn: A function that takes in ids, index, and cache as
arguments. The passed in arguments will have shape:
ids -> A tensor with shape [batch_size * beam_size, index].
index -> A scalar.
cache -> A nested dictionary of tensors [batch_size * beam_size, ...].
The function must return a tuple of logits and new cache:
logits -> A tensor with shape [batch * beam_size, vocab_size].
new cache -> A nested dictionary with the same shape/structure as the
inputted cache.
initial_ids: An int32 tensor with shape [batch_size]. Starting ids for
each batch item.
initial_cache: A dictionary, containing starting decoder variables
information.
vocab_size: An integer, the size of the vocabulary, used for topk
computation.
beam_size: An integer, the number of beams.
alpha: A float, defining the strength of length normalization.
max_decode_length: An integer, the maximum length to decoded a sequence.
eos_id: An integer, ID of eos token, used to determine when a sequence has
finished.
padded_decode: A bool, indicating if max_sequence_length padding is used
for beam search.
Returns:
Top decoded sequences [batch_size, beam_size, max_decode_length]
sequence scores [batch_size, beam_size]
"""
batch_size = (
initial_ids.shape.as_list()[0] if padded_decode else
tf.shape(initial_ids)[0])
sbs = SequenceBeamSearch(symbols_to_logits_fn, vocab_size, batch_size,
beam_size, alpha, max_decode_length, eos_id,
padded_decode)
return sbs.search(initial_ids, initial_cache)
def _log_prob_from_logits(logits):
return logits - tf.reduce_logsumexp(logits, axis=2, keepdims=True)
def _length_normalization(alpha, length, dtype=tf.float32):
"""Return length normalization factor."""
return tf.pow(((5. + tf.cast(length, dtype)) / 6.), alpha)
def _expand_to_beam_size(tensor, beam_size):
"""Tiles a given tensor by beam_size.
Args:
tensor: tensor to tile [batch_size, ...]
beam_size: How much to tile the tensor by.
Returns:
Tiled tensor [batch_size, beam_size, ...]
"""
tensor = tf.expand_dims(tensor, axis=1)
tile_dims = [1] * tensor.shape.ndims
tile_dims[1] = beam_size
return tf.tile(tensor, tile_dims)
def _shape_list(tensor):
"""Return a list of the tensor's shape, and ensure no None values in list."""
# Get statically known shape (may contain None's for unknown dimensions)
shape = tensor.get_shape().as_list()
# Ensure that the shape values are not None
dynamic_shape = tf.shape(tensor)
for i in range(len(shape)): # pylint: disable=consider-using-enumerate
if shape[i] is None:
shape[i] = dynamic_shape[i]
return shape
def _get_shape_keep_last_dim(tensor):
shape_list = _shape_list(tensor)
# Only the last
for i in range(len(shape_list) - 1):
shape_list[i] = None
if isinstance(shape_list[-1], tf.Tensor):
shape_list[-1] = None
return tf.TensorShape(shape_list)
def _get_shape(tensor):
"""Return the shape of the input tensor."""
return tf.TensorShape(_shape_list(tensor))
def _flatten_beam_dim(tensor):
"""Reshapes first two dimensions in to single dimension.
Args:
tensor: Tensor to reshape of shape [A, B, ...]
Returns:
Reshaped tensor of shape [A*B, ...]
"""
shape = _shape_list(tensor)
shape[0] *= shape[1]
shape.pop(1) # Remove beam dim
return tf.reshape(tensor, shape)
def _unflatten_beam_dim(tensor, batch_size, beam_size):
"""Reshapes first dimension back to [batch_size, beam_size].
Args:
tensor: Tensor to reshape of shape [batch_size*beam_size, ...]
batch_size: Tensor, original batch size.
beam_size: int, original beam size.
Returns:
Reshaped tensor of shape [batch_size, beam_size, ...]
"""
shape = _shape_list(tensor)
new_shape = [batch_size, beam_size] + shape[1:]
return tf.reshape(tensor, new_shape)
def _gather_beams(nested, beam_indices, batch_size, new_beam_size):
"""Gather beams from nested structure of tensors.
Each tensor in nested represents a batch of beams, where beam refers to a
single search state (beam search involves searching through multiple states
in parallel).
This function is used to gather the top beams, specified by
beam_indices, from the nested tensors.
Args:
nested: Nested structure (tensor, list, tuple or dict) containing tensors
with shape [batch_size, beam_size, ...].
beam_indices: int32 tensor with shape [batch_size, new_beam_size]. Each
value in beam_indices must be between [0, beam_size), and are not
necessarily unique.
batch_size: int size of batch
new_beam_size: int number of beams to be pulled from the nested tensors.
Returns:
Nested structure containing tensors with shape
[batch_size, new_beam_size, ...]
"""
# Computes the i'th coodinate that contains the batch index for gather_nd.
# Batch pos is a tensor like [[0,0,0,0,],[1,1,1,1],..].
batch_pos = tf.range(batch_size * new_beam_size) // new_beam_size
batch_pos = tf.reshape(batch_pos, [batch_size, new_beam_size])
# Create coordinates to be passed to tf.gather_nd. Stacking creates a tensor
# with shape [batch_size, beam_size, 2], where the last dimension contains
# the (i, j) gathering coordinates.
coordinates = tf.stack([batch_pos, beam_indices], axis=2)
return nest.map_structure(
lambda state: tf.gather_nd(state, coordinates), nested)
def _gather_topk_beams(nested, score_or_log_prob, batch_size, beam_size):
"""Gather top beams from nested structure."""
_, topk_indexes = tf.nn.top_k(score_or_log_prob, k=beam_size)
return _gather_beams(nested, topk_indexes, batch_size, beam_size)
|