File size: 14,372 Bytes
18ddfe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

"""Genetic algorithm for BF tasks.

Inspired by https://github.com/primaryobjects/AI-Programmer.
GA function code borrowed from https://github.com/DEAP/deap.
"""

from collections import namedtuple
import random

from absl import flags
from absl import logging
import numpy as np
from six.moves import xrange

from common import bf  # brain coder
from common import utils  # brain coder
from single_task import misc  # brain coder

FLAGS = flags.FLAGS

# Saving reward of previous programs saves computation if a program appears
# again.
USE_REWARD_CACHE = True  # Disable this if GA is using up too much memory.
GENES = bf.CHARS
MAX_PROGRAM_STEPS = 500
STEP_BONUS = True

ALPHANUM_CHARS = (
    ['_'] +
    [chr(ord('a') + i_) for i_ in range(26)] +
    [chr(ord('A') + i_) for i_ in range(26)] +
    [chr(ord('0') + i_) for i_ in range(10)])

Result = namedtuple(
    'Result',
    ['reward', 'inputs', 'code_outputs', 'target_outputs', 'type_in',
     'type_out', 'base', 'correct'])


class IOType(object):
  string = 'string'
  integer = 'integer'


class CustomType(object):

  def __init__(self, to_str_fn):
    self.to_str_fn = to_str_fn

  def __call__(self, obj):
    return self.to_str_fn(obj)


def tokens_list_repr(tokens, repr_type, base):
  """Make human readable representation of program IO."""
  if isinstance(repr_type, CustomType):
    return repr_type(tokens)
  elif repr_type == IOType.string:
    chars = (
        [ALPHANUM_CHARS[t] for t in tokens] if base < len(ALPHANUM_CHARS)
        else [chr(t) for t in tokens])
    return ''.join(chars)
  elif repr_type == IOType.integer:
    return str(tokens)
  raise ValueError('No such representation type "%s"', repr_type)


def io_repr(result):
  """Make human readable representation of test cases."""
  inputs = ','.join(
      tokens_list_repr(tokens, result.type_in, result.base)
      for tokens in result.inputs)
  code_outputs = ','.join(
      tokens_list_repr(tokens, result.type_out, result.base)
      for tokens in result.code_outputs)
  target_outputs = ','.join(
      tokens_list_repr(tokens, result.type_out, result.base)
      for tokens in result.target_outputs)
  return inputs, target_outputs, code_outputs


def make_task_eval_fn(task_manager):
  """Returns a wrapper that converts an RL task into a GA task.

  Args:
    task_manager: Is a task manager object from code_tasks.py

  Returns:
    A function that takes as input a single list of a code chars, and outputs
    a Result namedtuple instance containing the reward and information about
    code execution.
  """
  def to_data_list(single_or_tuple):
    if isinstance(single_or_tuple, misc.IOTuple):
      return list(single_or_tuple)
    return [single_or_tuple]

  def to_ga_type(rl_type):
    if rl_type == misc.IOType.string:
      return IOType.string
    return IOType.integer

  # Wrapper function.
  def evalbf(bf_chars):
    result = task_manager._score_code(''.join(bf_chars))
    reward = sum(result.episode_rewards)
    correct = result.reason == 'correct'
    return Result(
        reward=reward,
        inputs=to_data_list(result.input_case),
        code_outputs=to_data_list(result.code_output),
        target_outputs=to_data_list(result.correct_output),
        type_in=to_ga_type(result.input_type),
        type_out=to_ga_type(result.output_type),
        correct=correct,
        base=task_manager.task.base)

  return evalbf


def debug_str(individual, task_eval_fn):
  res = task_eval_fn(individual)
  input_str, target_output_str, code_output_str = io_repr(res)
  return (
      ''.join(individual) +
      ' | ' + input_str +
      ' | ' + target_output_str +
      ' | ' + code_output_str +
      ' | ' + str(res.reward) +
      ' | ' + str(res.correct))


def mutate_single(code_tokens, mutation_rate):
  """Mutate a single code string.

  Args:
    code_tokens: A string/list/Individual of BF code chars. Must end with EOS
        symbol '_'.
    mutation_rate: Float between 0 and 1 which sets the probability of each char
        being mutated.

  Returns:
    An Individual instance containing the mutated code string.

  Raises:
    ValueError: If `code_tokens` does not end with EOS symbol.
  """
  if len(code_tokens) <= 1:
    return code_tokens
  if code_tokens[-1] == '_':
    # Do this check to ensure that the code strings have not been corrupted.
    raise ValueError('`code_tokens` must end with EOS symbol.')
  else:
    cs = Individual(code_tokens)
    eos = []
  mutated = False
  for pos in range(len(cs)):
    if random.random() < mutation_rate:
      mutated = True
      new_char = GENES[random.randrange(len(GENES))]
      x = random.random()
      if x < 0.25 and pos != 0 and pos != len(cs) - 1:
        # Insertion mutation.
        if random.random() < 0.50:
          # Shift up.
          cs = cs[:pos] + [new_char] + cs[pos:-1]
        else:
          # Shift down.
          cs = cs[1:pos] + [new_char] + cs[pos:]
      elif x < 0.50:
        # Deletion mutation.
        if random.random() < 0.50:
          # Shift down.
          cs = cs[:pos] + cs[pos + 1:] + [new_char]
        else:
          # Shift up.
          cs = [new_char] + cs[:pos] + cs[pos + 1:]
      elif x < 0.75:
        # Shift rotate mutation (position invariant).
        if random.random() < 0.50:
          # Shift down.
          cs = cs[1:] + [cs[0]]
        else:
          # Shift up.
          cs = [cs[-1]] + cs[:-1]
      else:
        # Replacement mutation.
        cs = cs[:pos] + [new_char] + cs[pos + 1:]
  assert len(cs) + len(eos) == len(code_tokens)
  if mutated:
    return Individual(cs + eos)
  else:
    return Individual(code_tokens)


def crossover(parent1, parent2):
  """Performs crossover mating between two code strings.

  Crossover mating is where a random position is selected, and the chars
  after that point are swapped. The resulting new code strings are returned.

  Args:
    parent1: First code string.
    parent2: Second code string.

  Returns:
    A 2-tuple of children, i.e. the resulting code strings after swapping.
  """
  max_parent, min_parent = (
      (parent1, parent2) if len(parent1) > len(parent2)
      else (parent2, parent1))
  pos = random.randrange(len(max_parent))
  if pos >= len(min_parent):
    child1 = max_parent[:pos]
    child2 = min_parent + max_parent[pos:]
  else:
    child1 = max_parent[:pos] + min_parent[pos:]
    child2 = min_parent[:pos] + max_parent[pos:]
  return Individual(child1), Individual(child2)


def _make_even(n):
  """Return largest even integer less than or equal to `n`."""
  return (n >> 1) << 1


def mutate_and_crossover(population, mutation_rate, crossover_rate):
  """Take a generational step over a population.

  Transforms population of parents into population of children (of the same
  size) via crossover mating and then mutation on the resulting children.

  Args:
    population: Parent population. A list of Individual objects.
    mutation_rate: Probability of mutation. See `mutate_single`.
    crossover_rate: Probability that two parents will mate.

  Returns:
    Child population. A list of Individual objects.
  """
  children = [None] * len(population)
  for i in xrange(0, _make_even(len(population)), 2):
    p1 = population[i]
    p2 = population[i + 1]
    if random.random() < crossover_rate:
      p1, p2 = crossover(p1, p2)
    c1 = mutate_single(p1, mutation_rate)
    c2 = mutate_single(p2, mutation_rate)
    children[i] = c1
    children[i + 1] = c2
  if children[-1] is None:
    children[-1] = population[-1]
  return children


def ga_loop(population, cxpb, mutpb, ngen, task_eval_fn, halloffame=None,
            checkpoint_writer=None):
  """A bare bones genetic algorithm.

  Similar to chapter 7 of Back, Fogel and Michalewicz, "Evolutionary
  Computation 1 : Basic Algorithms and Operators", 2000.

  Args:
    population: A list of individuals.
    cxpb: The probability of mating two individuals.
    mutpb: The probability of mutating a gene.
    ngen: The number of generation. Unlimited if zero.
    task_eval_fn: A python function which maps an Individual to a Result
        namedtuple.
    halloffame: (optional) a utils.MaxUniquePriorityQueue object that will be
        used to aggregate the best individuals found during search.
    checkpoint_writer: (optional) an object that can save and load populations.
        Needs to have `write`, `load`, and `has_checkpoint` methods. Used to
        periodically save progress. In event of a restart, the population will
        be loaded from disk.

  Returns:
    GaResult namedtuple instance. This contains information about the GA run,
    including the resulting population, best reward (fitness) obtained, and
    the best code string found.
  """

  has_checkpoint = False
  if checkpoint_writer and checkpoint_writer.has_checkpoint():
    try:
      gen, population, halloffame = checkpoint_writer.load()
    except EOFError:  # Data was corrupted. Start over.
      pass
    else:
      has_checkpoint = True
      logging.info(
          'Loaded population from checkpoint. Starting at generation %d', gen)

      # Evaluate the individuals with an invalid fitness
      invalid_ind = [ind for ind in population if not ind.fitness.valid]
      for ind in invalid_ind:
        ind.fitness.values = task_eval_fn(ind).reward,
      for _, ind in halloffame.iter_in_order():
        ind.fitness.values = task_eval_fn(ind).reward,

  if not has_checkpoint:
    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    for ind in invalid_ind:
      ind.fitness.values = task_eval_fn(ind).reward,

    if halloffame is not None:
      for ind in population:
        halloffame.push(ind.fitness.values, tuple(ind), ind)

    logging.info('Initialized new population.')

    gen = 1

  pop_size = len(population)
  program_reward_cache = {} if USE_REWARD_CACHE else None

  # Begin the generational process
  while ngen == 0 or gen <= ngen:
    # Select the next generation individuals
    offspring = roulette_selection(population, pop_size - len(halloffame))

    # Vary the pool of individuals
    # offspring = varAnd(offspring, toolbox, cxpb, mutpb)
    offspring = mutate_and_crossover(
        offspring, mutation_rate=mutpb, crossover_rate=cxpb)

    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
    for ind in invalid_ind:
      str_repr = ''.join(ind)
      if program_reward_cache is not None and str_repr in program_reward_cache:
        ind.fitness.values = (program_reward_cache[str_repr],)
      else:
        eval_result = task_eval_fn(ind)
        ind.fitness.values = (eval_result.reward,)
        if program_reward_cache is not None:
          program_reward_cache[str_repr] = eval_result.reward

    # Replace the current population by the offspring
    population = list(offspring)

    # Update the hall of fame with the generated individuals
    if halloffame is not None:
      for ind in population:
        halloffame.push(ind.fitness.values, tuple(ind), ind)

    # elitism
    population.extend([ind for _, ind in halloffame.iter_in_order()])

    if gen % 100 == 0:
      top_code = '\n'.join([debug_str(ind, task_eval_fn)
                            for ind in topk(population, k=4)])
      logging.info('gen: %d\nNPE: %d\n%s\n\n', gen, gen * pop_size, top_code)

      best_code = ''.join(halloffame.get_max()[1])
      res = task_eval_fn(best_code)

      # Write population and hall-of-fame to disk.
      if checkpoint_writer:
        checkpoint_writer.write(gen, population, halloffame)

      if res.correct:
        logging.info('Solution found:\n%s\nreward = %s\n',
                     best_code, res.reward)
        break

    gen += 1

  best_code = ''.join(halloffame.get_max()[1])
  res = task_eval_fn(best_code)

  return GaResult(
      population=population, best_code=best_code, reward=res.reward,
      solution_found=res.correct, generations=gen,
      num_programs=gen * len(population),
      max_generations=ngen, max_num_programs=ngen * len(population))


GaResult = namedtuple(
    'GaResult',
    ['population', 'best_code', 'reward', 'generations', 'num_programs',
     'solution_found', 'max_generations', 'max_num_programs'])


def reward_conversion(reward):
  """Convert real value into positive value."""
  if reward <= 0:
    return 0.05
  return reward + 0.05


def roulette_selection(population, k):
  """Select `k` individuals with prob proportional to fitness.

  Each of the `k` selections is independent.

  Warning:
    The roulette selection by definition cannot be used for minimization
    or when the fitness can be smaller or equal to 0.

  Args:
    population: A list of Individual objects to select from.
    k: The number of individuals to select.

  Returns:
    A list of selected individuals.
  """
  fitnesses = np.asarray(
      [reward_conversion(ind.fitness.values[0])
       for ind in population])
  assert np.all(fitnesses > 0)

  sum_fits = fitnesses.sum()
  chosen = [None] * k
  for i in xrange(k):
    u = random.random() * sum_fits
    sum_ = 0
    for ind, fitness in zip(population, fitnesses):
      sum_ += fitness
      if sum_ > u:
        chosen[i] = Individual(ind)
        break
    if not chosen[i]:
      chosen[i] = Individual(population[-1])

  return chosen


def make_population(make_individual_fn, n):
  return [make_individual_fn() for _ in xrange(n)]


def best(population):
  best_ind = None
  for ind in population:
    if best_ind is None or best_ind.fitness.values < ind.fitness.values:
      best_ind = ind
  return best_ind


def topk(population, k):
  q = utils.MaxUniquePriorityQueue(k)
  for ind in population:
    q.push(ind.fitness.values, tuple(ind), ind)
  return [ind for _, ind in q.iter_in_order()]


class Fitness(object):

  def __init__(self):
    self.values = ()

  @property
  def valid(self):
    """Assess if a fitness is valid or not."""
    return bool(self.values)


class Individual(list):

  def __init__(self, *args):
    super(Individual, self).__init__(*args)
    self.fitness = Fitness()


def random_individual(genome_size):
  return lambda: Individual(np.random.choice(GENES, genome_size).tolist())