File size: 12,111 Bytes
18ddfe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
"""Genetic algorithm for BF tasks.
Also contains the uniform random search algorithm.
Inspired by https://github.com/primaryobjects/AI-Programmer.
GA function code borrowed from https://github.com/DEAP/deap.
"""
import cPickle
import os
import sys
from time import sleep
from absl import flags
from absl import logging
import numpy as np
from six.moves import xrange
import tensorflow as tf
from common import utils # brain coder
from single_task import data # brain coder
from single_task import defaults # brain coder
from single_task import ga_lib # brain coder
from single_task import results_lib # brain coder
FLAGS = flags.FLAGS
def define_tuner_hparam_space(hparam_space_type):
"""Define tunable hparams for grid search."""
if hparam_space_type != 'ga':
raise ValueError('Hparam space is not valid: "%s"' % hparam_space_type)
return {
'population_size': [10, 25, 50, 100, 500],
'crossover_rate': [0.2, 0.5, 0.7, 0.9, 0.95],
'mutation_rate': [0.01, 0.03, 0.05, 0.1, 0.15]}
def write_hparams_to_config(config, hparams, hparam_space_type):
"""Write hparams given by the tuner into the Config object."""
if hparam_space_type != 'ga':
raise ValueError('Hparam space is not valid: "%s"' % hparam_space_type)
config.batch_size = hparams.population_size
config.agent.crossover_rate = hparams.crossover_rate
config.agent.mutation_rate = hparams.mutation_rate
class CheckpointWriter(object):
"""Manages loading and saving GA populations to disk.
This object is used by the genetic algorithm to save progress periodically
so that a recent population can be loaded from disk in the event of a restart.
"""
def __init__(self, checkpoint_dir, population_size):
self.checkpoint_file = os.path.join(checkpoint_dir, 'checkpoint.pickle')
self.population_size = population_size
def write(self, gen, population, halloffame):
"""Write GA state to disk.
Overwrites previous saved state.
Args:
gen: Generation number.
population: List of Individual objects.
halloffame: Hall-of-fame buffer. Typically a priority queue.
"""
raw = cPickle.dumps((gen, population, halloffame))
with tf.gfile.FastGFile(self.checkpoint_file, 'w') as f:
f.write(raw)
def load(self):
"""Loads GA state from disk.
Loads whatever is on disk, which will be whatever the most recent call
to `write` wrote.
Returns:
gen: Generation number.
population: List of Individual objects.
halloffame: Hall-of-fame buffer. Typically a priority queue.
"""
with tf.gfile.FastGFile(self.checkpoint_file, 'r') as f:
raw = f.read()
objs = cPickle.loads(raw)
# Validate data.
assert isinstance(objs, tuple) and len(objs) == 3, (
'Expecting a 3-tuple, but got %s instead.' % (objs,))
gen, population, halloffame = objs
assert isinstance(gen, int), (
'Expecting `gen` to be an integer, got %s' % (gen,))
assert (
isinstance(population, list)
and len(population) == self.population_size
), (
'Expecting `population` to be a list with size %d, got %s'
% (self.population_size, population))
assert halloffame is None or len(halloffame) == 2, (
'Expecting hall-of-fame object to have length two, got length %d'
% len(halloffame))
logging.info('Loaded pop from checkpoint file: "%s".',
self.checkpoint_file)
return gen, population, halloffame
def has_checkpoint(self):
"""Checks if a checkpoint exists on disk, and if so returns True."""
return tf.gfile.Exists(self.checkpoint_file)
def run_training(config=None, tuner=None, logdir=None, trial_name=None, # pylint: disable=unused-argument
is_chief=True):
"""Do all training runs.
This is the top level training function for policy gradient based models.
Run this from the main function.
Args:
config: config_lib.Config instance containing global config (agent and
environment hparams). If None, config will be parsed from FLAGS.config.
tuner: (unused) A tuner instance. Leave as None if not tuning.
logdir: Parent directory where all data from all runs will be written. If
None, FLAGS.logdir will be used.
trial_name: (unused) If tuning, set this to a unique string that identifies
this trial. If `tuner` is not None, this also must be set.
is_chief: True if this worker is the chief.
Returns:
List of results dicts which were written to disk. Each training run gets a
results dict. Results dict contains metrics, i.e. (name, value) pairs which
give information about the training run.
Raises:
ValueError: If FLAGS.num_workers does not divide FLAGS.num_repetitions.
ValueError: If results dicts read from disk contain invalid data.
"""
if not config:
# If custom config is not given, get it from flags.
config = defaults.default_config_with_updates(FLAGS.config)
if not logdir:
logdir = FLAGS.logdir
if FLAGS.num_repetitions % FLAGS.num_workers != 0:
raise ValueError('Number of workers must divide number of repetitions')
num_local_reps = FLAGS.num_repetitions // FLAGS.num_workers
logging.info('Running %d reps globally.', FLAGS.num_repetitions)
logging.info('This worker will run %d local reps.', num_local_reps)
if FLAGS.max_npe:
max_generations = FLAGS.max_npe // config.batch_size
logging.info('Max samples per rep: %d', FLAGS.max_npe)
logging.info('Max generations per rep: %d', max_generations)
else:
max_generations = sys.maxint
logging.info('Running unlimited generations.')
assert FLAGS.num_workers > 0
logging.info('Starting experiment. Directory: "%s"', logdir)
results = results_lib.Results(logdir, FLAGS.task_id)
local_results_list = results.read_this_shard()
if local_results_list:
if local_results_list[0]['max_npe'] != FLAGS.max_npe:
raise ValueError(
'Cannot resume training. Max-NPE changed. Was %s, now %s',
local_results_list[0]['max_npe'], FLAGS.max_npe)
if local_results_list[0]['max_global_repetitions'] != FLAGS.num_repetitions:
raise ValueError(
'Cannot resume training. Number of repetitions changed. Was %s, '
'now %s',
local_results_list[0]['max_global_repetitions'],
FLAGS.num_repetitions)
start_rep = len(local_results_list)
for rep in xrange(start_rep, num_local_reps):
global_rep = num_local_reps * FLAGS.task_id + rep
logging.info(
'Starting repetition: Rep = %d. (global rep = %d)',
rep, global_rep)
# Save data for each rep, like checkpoints, goes into separate folders.
run_dir = os.path.join(logdir, 'run_%d' % global_rep)
if not tf.gfile.IsDirectory(run_dir):
tf.gfile.MakeDirs(run_dir)
checkpoint_writer = CheckpointWriter(run_dir,
population_size=config.batch_size)
data_manager = data.DataManager(config, run_number=global_rep)
task_eval_fn = ga_lib.make_task_eval_fn(data_manager.rl_task)
if config.agent.algorithm == 'rand':
logging.info('Running random search.')
assert FLAGS.max_npe
result = run_random_search(
FLAGS.max_npe, run_dir, task_eval_fn, config.timestep_limit)
else:
assert config.agent.algorithm == 'ga'
logging.info('Running genetic algorithm.')
pop = ga_lib.make_population(
ga_lib.random_individual(config.timestep_limit),
n=config.batch_size)
hof = utils.MaxUniquePriorityQueue(2) # Hall of fame.
result = ga_lib.ga_loop(
pop,
cxpb=config.agent.crossover_rate, mutpb=config.agent.mutation_rate,
task_eval_fn=task_eval_fn,
ngen=max_generations, halloffame=hof,
checkpoint_writer=checkpoint_writer)
logging.info('Finished rep. Num gens: %d', result.generations)
results_dict = {
'max_npe': FLAGS.max_npe,
'batch_size': config.batch_size,
'max_batches': FLAGS.max_npe // config.batch_size,
'npe': result.num_programs,
'max_global_repetitions': FLAGS.num_repetitions,
'max_local_repetitions': num_local_reps,
'code_solution': result.best_code if result.solution_found else '',
'best_reward': result.reward,
'num_batches': result.generations,
'found_solution': result.solution_found,
'task': data_manager.task_name,
'global_rep': global_rep}
logging.info('results_dict: %s', results_dict)
results.append(results_dict)
if is_chief:
logging.info(
'Worker is chief. Waiting for all workers to finish so that results '
'can be reported to the tuner.')
global_results_list, shard_stats = results.read_all(
num_shards=FLAGS.num_workers)
while not all(s.finished for s in shard_stats):
logging.info(
'Still waiting on these workers: %s',
', '.join(
['%d (%d reps left)'
% (i, s.max_local_reps - s.num_local_reps_completed)
for i, s in enumerate(shard_stats)
if not s.finished]))
sleep(60)
global_results_list, shard_stats = results.read_all(
num_shards=FLAGS.num_workers)
logging.info(
'%d results obtained. Chief worker is exiting the experiment.',
len(global_results_list))
return global_results_list
def run_random_search(max_num_programs, checkpoint_dir, task_eval_fn,
timestep_limit):
"""Run uniform random search routine.
Randomly samples programs from a uniform distribution until either a valid
program is found, or the maximum NPE is reached. Results are written to disk
and returned.
Args:
max_num_programs: Maximum NPE (number of programs executed). If no solution
is found after this many programs are tried, the run is stopped and
considered a failure.
checkpoint_dir: Where to save state during the run.
task_eval_fn: Function that maps code string to result containing total
reward and info about success.
timestep_limit: Maximum length of code strings.
Returns:
ga_lib.GaResult namedtuple instance. This contains the best code and highest
reward found.
"""
checkpoint_file = os.path.join(checkpoint_dir, 'random_search.txt')
num_programs_seen = 0
found_solution = False
best_code = ''
best_reward = 0.0
if tf.gfile.Exists(checkpoint_file):
try:
with tf.gfile.FastGFile(checkpoint_file, 'r') as f:
lines = list(f)
num_programs_seen = int(lines[0])
found_solution = bool(int(lines[1]))
if found_solution:
best_code = lines[2]
best_reward = float(lines[3])
except: # pylint: disable=bare-except
pass
while not found_solution and num_programs_seen < max_num_programs:
if num_programs_seen % 1000 == 0:
logging.info('num_programs_seen = %d', num_programs_seen)
with tf.gfile.FastGFile(checkpoint_file, 'w') as f:
f.write(str(num_programs_seen) + '\n')
f.write(str(int(found_solution)) + '\n')
code = np.random.choice(ga_lib.GENES, timestep_limit).tolist()
res = task_eval_fn(code)
found_solution = res.correct
num_programs_seen += 1
if found_solution:
best_code = ''.join(code)
best_reward = res.reward
logging.info('num_programs_seen = %d', num_programs_seen)
logging.info('found solution: %s', found_solution)
with tf.gfile.FastGFile(checkpoint_file, 'w') as f:
f.write(str(num_programs_seen) + '\n')
f.write(str(int(found_solution)) + '\n')
if found_solution:
f.write(best_code + '\n')
f.write(str(best_reward) + '\n')
return ga_lib.GaResult(
population=[], best_code=best_code, reward=best_reward,
solution_found=found_solution, generations=num_programs_seen,
num_programs=num_programs_seen, max_generations=max_num_programs,
max_num_programs=max_num_programs)
|