File size: 53,744 Bytes
18ddfe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
"""Language model agent.
Agent outputs code in a sequence just like a language model. Can be trained
as a language model or using RL, or a combination of the two.
"""
from collections import namedtuple
from math import exp
from math import log
import time
from absl import logging
import numpy as np
from six.moves import xrange
import tensorflow as tf
from common import rollout as rollout_lib # brain coder
from common import utils # brain coder
from single_task import misc # brain coder
# Experiments in the ICLR 2018 paper used reduce_sum instead of reduce_mean for
# some losses. We make all loses be batch_size independent, and multiply the
# changed losses by 64, which was the fixed batch_size when the experiments
# where run. The loss hyperparameters still match what is reported in the paper.
MAGIC_LOSS_MULTIPLIER = 64
def rshift_time(tensor_2d, fill=misc.BF_EOS_INT):
"""Right shifts a 2D tensor along the time dimension (axis-1)."""
dim_0 = tf.shape(tensor_2d)[0]
fill_tensor = tf.fill([dim_0, 1], fill)
return tf.concat([fill_tensor, tensor_2d[:, :-1]], axis=1)
def join(a, b):
# Concat a and b along 0-th dim.
if a is None or len(a) == 0: # pylint: disable=g-explicit-length-test
return b
if b is None or len(b) == 0: # pylint: disable=g-explicit-length-test
return a
return np.concatenate((a, b))
def make_optimizer(kind, lr):
if kind == 'sgd':
return tf.train.GradientDescentOptimizer(lr)
elif kind == 'adam':
return tf.train.AdamOptimizer(lr)
elif kind == 'rmsprop':
return tf.train.RMSPropOptimizer(learning_rate=lr, decay=0.99)
else:
raise ValueError('Optimizer type "%s" not recognized.' % kind)
class LinearWrapper(tf.contrib.rnn.RNNCell):
"""RNNCell wrapper that adds a linear layer to the output."""
def __init__(self, cell, output_size, dtype=tf.float32, suppress_index=None):
self.cell = cell
self._output_size = output_size
self._dtype = dtype
self._suppress_index = suppress_index
self.smallest_float = -2.4e38
def __call__(self, inputs, state, scope=None):
with tf.variable_scope(type(self).__name__):
outputs, state = self.cell(inputs, state, scope=scope)
logits = tf.matmul(
outputs,
tf.get_variable('w_output',
[self.cell.output_size, self.output_size],
dtype=self._dtype))
if self._suppress_index is not None:
# Replace the target index with -inf, so that it never gets selected.
batch_size = tf.shape(logits)[0]
logits = tf.concat(
[logits[:, :self._suppress_index],
tf.fill([batch_size, 1], self.smallest_float),
logits[:, self._suppress_index + 1:]],
axis=1)
return logits, state
@property
def output_size(self):
return self._output_size
@property
def state_size(self):
return self.cell.state_size
def zero_state(self, batch_size, dtype):
return self.cell.zero_state(batch_size, dtype)
UpdateStepResult = namedtuple(
'UpdateStepResult',
['global_step', 'global_npe', 'summaries_list', 'gradients_dict'])
class AttrDict(dict):
"""Dict with attributes as keys.
https://stackoverflow.com/a/14620633
"""
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
class LMAgent(object):
"""Language model agent."""
action_space = misc.bf_num_tokens()
observation_space = misc.bf_num_tokens()
def __init__(self, global_config, task_id=0,
logging_file=None,
experience_replay_file=None,
global_best_reward_fn=None,
found_solution_op=None,
assign_code_solution_fn=None,
program_count=None,
do_iw_summaries=False,
stop_on_success=True,
dtype=tf.float32,
verbose_level=0,
is_local=True):
self.config = config = global_config.agent
self.logging_file = logging_file
self.experience_replay_file = experience_replay_file
self.task_id = task_id
self.verbose_level = verbose_level
self.global_best_reward_fn = global_best_reward_fn
self.found_solution_op = found_solution_op
self.assign_code_solution_fn = assign_code_solution_fn
self.parent_scope_name = tf.get_variable_scope().name
self.dtype = dtype
self.allow_eos_token = config.eos_token
self.stop_on_success = stop_on_success
self.pi_loss_hparam = config.pi_loss_hparam
self.vf_loss_hparam = config.vf_loss_hparam
self.is_local = is_local
self.top_reward = 0.0
self.embeddings_trainable = True
self.no_op = tf.no_op()
self.learning_rate = tf.constant(
config.lr, dtype=dtype, name='learning_rate')
self.initializer = tf.contrib.layers.variance_scaling_initializer(
factor=config.param_init_factor,
mode='FAN_AVG',
uniform=True,
dtype=dtype) # TF's default initializer.
tf.get_variable_scope().set_initializer(self.initializer)
self.a2c = config.ema_baseline_decay == 0
if not self.a2c:
logging.info('Using exponential moving average REINFORCE baselines.')
self.ema_baseline_decay = config.ema_baseline_decay
self.ema_by_len = [0.0] * global_config.timestep_limit
else:
logging.info('Using advantage (a2c) with learned value function.')
self.ema_baseline_decay = 0.0
self.ema_by_len = None
# Top-k
if config.topk and config.topk_loss_hparam:
self.topk_loss_hparam = config.topk_loss_hparam
self.topk_batch_size = config.topk_batch_size
if self.topk_batch_size <= 0:
raise ValueError('topk_batch_size must be a positive integer. Got %s',
self.topk_batch_size)
self.top_episodes = utils.MaxUniquePriorityQueue(config.topk)
logging.info('Made max-priorty-queue with capacity %d',
self.top_episodes.capacity)
else:
self.top_episodes = None
self.topk_loss_hparam = 0.0
logging.info('No max-priorty-queue')
# Experience replay.
self.replay_temperature = config.replay_temperature
self.num_replay_per_batch = int(global_config.batch_size * config.alpha)
self.num_on_policy_per_batch = (
global_config.batch_size - self.num_replay_per_batch)
self.replay_alpha = (
self.num_replay_per_batch / float(global_config.batch_size))
logging.info('num_replay_per_batch: %d', self.num_replay_per_batch)
logging.info('num_on_policy_per_batch: %d', self.num_on_policy_per_batch)
logging.info('replay_alpha: %s', self.replay_alpha)
if self.num_replay_per_batch > 0:
# Train with off-policy episodes from replay buffer.
start_time = time.time()
self.experience_replay = utils.RouletteWheel(
unique_mode=True, save_file=experience_replay_file)
logging.info('Took %s sec to load replay buffer from disk.',
int(time.time() - start_time))
logging.info('Replay buffer file location: "%s"',
self.experience_replay.save_file)
else:
# Only train on-policy.
self.experience_replay = None
if program_count is not None:
self.program_count = program_count
self.program_count_add_ph = tf.placeholder(
tf.int64, [], 'program_count_add_ph')
self.program_count_add_op = self.program_count.assign_add(
self.program_count_add_ph)
################################
# RL policy and value networks #
################################
batch_size = global_config.batch_size
logging.info('batch_size: %d', batch_size)
self.policy_cell = LinearWrapper(
tf.contrib.rnn.MultiRNNCell(
[tf.contrib.rnn.BasicLSTMCell(cell_size)
for cell_size in config.policy_lstm_sizes]),
self.action_space,
dtype=dtype,
suppress_index=None if self.allow_eos_token else misc.BF_EOS_INT)
self.value_cell = LinearWrapper(
tf.contrib.rnn.MultiRNNCell(
[tf.contrib.rnn.BasicLSTMCell(cell_size)
for cell_size in config.value_lstm_sizes]),
1,
dtype=dtype)
obs_embedding_scope = 'obs_embed'
with tf.variable_scope(
obs_embedding_scope,
initializer=tf.random_uniform_initializer(minval=-1.0, maxval=1.0)):
obs_embeddings = tf.get_variable(
'embeddings',
[self.observation_space, config.obs_embedding_size],
dtype=dtype, trainable=self.embeddings_trainable)
self.obs_embeddings = obs_embeddings
################################
# RL policy and value networks #
################################
initial_state = tf.fill([batch_size], misc.BF_EOS_INT)
def loop_fn(loop_time, cell_output, cell_state, loop_state):
"""Function called by tf.nn.raw_rnn to instantiate body of the while_loop.
See https://www.tensorflow.org/api_docs/python/tf/nn/raw_rnn for more
information.
When time is 0, and cell_output, cell_state, loop_state are all None,
`loop_fn` will create the initial input, internal cell state, and loop
state. When time > 0, `loop_fn` will operate on previous cell output,
state, and loop state.
Args:
loop_time: A scalar tensor holding the current timestep (zero based
counting).
cell_output: Output of the raw_rnn cell at the current timestep.
cell_state: Cell internal state at the current timestep.
loop_state: Additional loop state. These tensors were returned by the
previous call to `loop_fn`.
Returns:
elements_finished: Bool tensor of shape [batch_size] which marks each
sequence in the batch as being finished or not finished.
next_input: A tensor containing input to be fed into the cell at the
next timestep.
next_cell_state: Cell internal state to be fed into the cell at the
next timestep.
emit_output: Tensor to be added to the TensorArray returned by raw_rnn
as output from the while_loop.
next_loop_state: Additional loop state. These tensors will be fed back
into the next call to `loop_fn` as `loop_state`.
"""
if cell_output is None: # 0th time step.
next_cell_state = self.policy_cell.zero_state(batch_size, dtype)
elements_finished = tf.zeros([batch_size], tf.bool)
output_lengths = tf.ones([batch_size], dtype=tf.int32)
next_input = tf.gather(obs_embeddings, initial_state)
emit_output = None
next_loop_state = (
tf.TensorArray(dtype=tf.int32, size=0, dynamic_size=True),
output_lengths,
elements_finished
)
else:
scaled_logits = cell_output * config.softmax_tr # Scale temperature.
prev_chosen, prev_output_lengths, prev_elements_finished = loop_state
next_cell_state = cell_state
chosen_outputs = tf.to_int32(tf.where(
tf.logical_not(prev_elements_finished),
tf.multinomial(logits=scaled_logits, num_samples=1)[:, 0],
tf.zeros([batch_size], dtype=tf.int64)))
elements_finished = tf.logical_or(
tf.equal(chosen_outputs, misc.BF_EOS_INT),
loop_time >= global_config.timestep_limit)
output_lengths = tf.where(
elements_finished,
prev_output_lengths,
# length includes EOS token. empty seq has len 1.
tf.tile(tf.expand_dims(loop_time + 1, 0), [batch_size])
)
next_input = tf.gather(obs_embeddings, chosen_outputs)
emit_output = scaled_logits
next_loop_state = (prev_chosen.write(loop_time - 1, chosen_outputs),
output_lengths,
tf.logical_or(prev_elements_finished,
elements_finished))
return (elements_finished, next_input, next_cell_state, emit_output,
next_loop_state)
with tf.variable_scope('policy'):
(decoder_outputs_ta,
_, # decoder_state
(sampled_output_ta, output_lengths, _)) = tf.nn.raw_rnn(
cell=self.policy_cell,
loop_fn=loop_fn)
policy_logits = tf.transpose(decoder_outputs_ta.stack(), (1, 0, 2),
name='policy_logits')
sampled_tokens = tf.transpose(sampled_output_ta.stack(), (1, 0),
name='sampled_tokens')
# Add SOS to beginning of the sequence.
rshift_sampled_tokens = rshift_time(sampled_tokens, fill=misc.BF_EOS_INT)
# Initial state is 0, 2nd state is first token.
# Note: If value of last state is computed, this will be used as bootstrap.
if self.a2c:
with tf.variable_scope('value'):
value_output, _ = tf.nn.dynamic_rnn(
self.value_cell,
tf.gather(obs_embeddings, rshift_sampled_tokens),
sequence_length=output_lengths,
dtype=dtype)
value = tf.squeeze(value_output, axis=[2])
else:
value = tf.zeros([], dtype=dtype)
# for sampling actions from the agent, and which told tensors for doing
# gradient updates on the agent.
self.sampled_batch = AttrDict(
logits=policy_logits,
value=value,
tokens=sampled_tokens,
episode_lengths=output_lengths,
probs=tf.nn.softmax(policy_logits),
log_probs=tf.nn.log_softmax(policy_logits))
# adjusted_lengths can be less than the full length of each episode.
# Use this to train on only part of an episode (starting from t=0).
self.adjusted_lengths = tf.placeholder(
tf.int32, [None], name='adjusted_lengths')
self.policy_multipliers = tf.placeholder(
dtype,
[None, None],
name='policy_multipliers')
# Empirical value, i.e. discounted sum of observed future rewards from each
# time step in the episode.
self.empirical_values = tf.placeholder(
dtype,
[None, None],
name='empirical_values')
# Off-policy training. Just add supervised loss to the RL loss.
self.off_policy_targets = tf.placeholder(
tf.int32,
[None, None],
name='off_policy_targets')
self.off_policy_target_lengths = tf.placeholder(
tf.int32, [None], name='off_policy_target_lengths')
self.actions = tf.placeholder(tf.int32, [None, None], name='actions')
# Add SOS to beginning of the sequence.
inputs = rshift_time(self.actions, fill=misc.BF_EOS_INT)
with tf.variable_scope('policy', reuse=True):
logits, _ = tf.nn.dynamic_rnn(
self.policy_cell, tf.gather(obs_embeddings, inputs),
sequence_length=self.adjusted_lengths,
dtype=dtype)
if self.a2c:
with tf.variable_scope('value', reuse=True):
value_output, _ = tf.nn.dynamic_rnn(
self.value_cell,
tf.gather(obs_embeddings, inputs),
sequence_length=self.adjusted_lengths,
dtype=dtype)
value2 = tf.squeeze(value_output, axis=[2])
else:
value2 = tf.zeros([], dtype=dtype)
self.given_batch = AttrDict(
logits=logits,
value=value2,
tokens=sampled_tokens,
episode_lengths=self.adjusted_lengths,
probs=tf.nn.softmax(logits),
log_probs=tf.nn.log_softmax(logits))
# Episode masks.
max_episode_length = tf.shape(self.actions)[1]
# range_row shape: [1, max_episode_length]
range_row = tf.expand_dims(tf.range(max_episode_length), 0)
episode_masks = tf.cast(
tf.less(range_row, tf.expand_dims(self.given_batch.episode_lengths, 1)),
dtype=dtype)
episode_masks_3d = tf.expand_dims(episode_masks, 2)
# Length adjusted episodes.
self.a_probs = a_probs = self.given_batch.probs * episode_masks_3d
self.a_log_probs = a_log_probs = (
self.given_batch.log_probs * episode_masks_3d)
self.a_value = a_value = self.given_batch.value * episode_masks
self.a_policy_multipliers = a_policy_multipliers = (
self.policy_multipliers * episode_masks)
if self.a2c:
self.a_empirical_values = a_empirical_values = (
self.empirical_values * episode_masks)
# pi_loss is scalar
acs_onehot = tf.one_hot(self.actions, self.action_space, dtype=dtype)
self.acs_onehot = acs_onehot
chosen_masked_log_probs = acs_onehot * a_log_probs
pi_target = tf.expand_dims(a_policy_multipliers, -1)
pi_loss_per_step = chosen_masked_log_probs * pi_target # Maximize.
self.pi_loss = pi_loss = (
-tf.reduce_mean(tf.reduce_sum(pi_loss_per_step, axis=[1, 2]), axis=0)
* MAGIC_LOSS_MULTIPLIER) # Minimize.
assert len(self.pi_loss.shape) == 0 # pylint: disable=g-explicit-length-test
# shape: [batch_size, time]
self.chosen_log_probs = tf.reduce_sum(chosen_masked_log_probs, axis=2)
self.chosen_probs = tf.reduce_sum(acs_onehot * a_probs, axis=2)
# loss of value function
if self.a2c:
vf_loss_per_step = tf.square(a_value - a_empirical_values)
self.vf_loss = vf_loss = (
tf.reduce_mean(tf.reduce_sum(vf_loss_per_step, axis=1), axis=0)
* MAGIC_LOSS_MULTIPLIER) # Minimize.
assert len(self.vf_loss.shape) == 0 # pylint: disable=g-explicit-length-test
else:
self.vf_loss = vf_loss = 0.0
# Maximize entropy regularizer
self.entropy = entropy = (
-tf.reduce_mean(
tf.reduce_sum(a_probs * a_log_probs, axis=[1, 2]), axis=0)
* MAGIC_LOSS_MULTIPLIER) # Maximize
self.negentropy = -entropy # Minimize negentropy.
assert len(self.negentropy.shape) == 0 # pylint: disable=g-explicit-length-test
# off-policy loss
self.offp_switch = tf.placeholder(dtype, [], name='offp_switch')
if self.top_episodes is not None:
# Add SOS to beginning of the sequence.
offp_inputs = tf.gather(obs_embeddings,
rshift_time(self.off_policy_targets,
fill=misc.BF_EOS_INT))
with tf.variable_scope('policy', reuse=True):
offp_logits, _ = tf.nn.dynamic_rnn(
self.policy_cell, offp_inputs, self.off_policy_target_lengths,
dtype=dtype) # shape: [batch_size, time, action_space]
topk_loss_per_step = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=self.off_policy_targets,
logits=offp_logits,
name='topk_loss_per_logit')
# Take mean over batch dimension so that the loss multiplier strength is
# independent of batch size. Sum over time dimension.
topk_loss = tf.reduce_mean(
tf.reduce_sum(topk_loss_per_step, axis=1), axis=0)
assert len(topk_loss.shape) == 0 # pylint: disable=g-explicit-length-test
self.topk_loss = topk_loss * self.offp_switch
logging.info('Including off policy loss.')
else:
self.topk_loss = topk_loss = 0.0
self.entropy_hparam = tf.constant(
config.entropy_beta, dtype=dtype, name='entropy_beta')
self.pi_loss_term = pi_loss * self.pi_loss_hparam
self.vf_loss_term = vf_loss * self.vf_loss_hparam
self.entropy_loss_term = self.negentropy * self.entropy_hparam
self.topk_loss_term = self.topk_loss_hparam * topk_loss
self.loss = (
self.pi_loss_term
+ self.vf_loss_term
+ self.entropy_loss_term
+ self.topk_loss_term)
params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
tf.get_variable_scope().name)
self.trainable_variables = params
self.sync_variables = self.trainable_variables
non_embedding_params = [p for p in params
if obs_embedding_scope not in p.name]
self.non_embedding_params = non_embedding_params
self.params = params
if config.regularizer:
logging.info('Adding L2 regularizer with scale %.2f.',
config.regularizer)
self.regularizer = config.regularizer * sum(
tf.nn.l2_loss(w) for w in non_embedding_params)
self.loss += self.regularizer
else:
logging.info('Skipping regularizer.')
self.regularizer = 0.0
# Only build gradients graph for local model.
if self.is_local:
unclipped_grads = tf.gradients(self.loss, params)
self.dense_unclipped_grads = [
tf.convert_to_tensor(g) for g in unclipped_grads]
self.grads, self.global_grad_norm = tf.clip_by_global_norm(
unclipped_grads, config.grad_clip_threshold)
self.gradients_dict = dict(zip(params, self.grads))
self.optimizer = make_optimizer(config.optimizer, self.learning_rate)
self.all_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
tf.get_variable_scope().name)
self.do_iw_summaries = do_iw_summaries
if self.do_iw_summaries:
b = None
self.log_iw_replay_ph = tf.placeholder(tf.float32, [b],
'log_iw_replay_ph')
self.log_iw_policy_ph = tf.placeholder(tf.float32, [b],
'log_iw_policy_ph')
self.log_prob_replay_ph = tf.placeholder(tf.float32, [b],
'log_prob_replay_ph')
self.log_prob_policy_ph = tf.placeholder(tf.float32, [b],
'log_prob_policy_ph')
self.log_norm_replay_weights_ph = tf.placeholder(
tf.float32, [b], 'log_norm_replay_weights_ph')
self.iw_summary_op = tf.summary.merge([
tf.summary.histogram('is/log_iw_replay', self.log_iw_replay_ph),
tf.summary.histogram('is/log_iw_policy', self.log_iw_policy_ph),
tf.summary.histogram('is/log_prob_replay', self.log_prob_replay_ph),
tf.summary.histogram('is/log_prob_policy', self.log_prob_policy_ph),
tf.summary.histogram(
'is/log_norm_replay_weights', self.log_norm_replay_weights_ph),
])
def make_summary_ops(self):
"""Construct summary ops for the model."""
# size = number of timesteps across entire batch. Number normalized by size
# will not be affected by the amount of padding at the ends of sequences
# in the batch.
size = tf.cast(
tf.reduce_sum(self.given_batch.episode_lengths), dtype=self.dtype)
offp_size = tf.cast(tf.reduce_sum(self.off_policy_target_lengths),
dtype=self.dtype)
scope_prefix = self.parent_scope_name
def _remove_prefix(prefix, name):
assert name.startswith(prefix)
return name[len(prefix):]
# RL summaries.
self.rl_summary_op = tf.summary.merge(
[tf.summary.scalar('model/policy_loss', self.pi_loss / size),
tf.summary.scalar('model/value_loss', self.vf_loss / size),
tf.summary.scalar('model/topk_loss', self.topk_loss / offp_size),
tf.summary.scalar('model/entropy', self.entropy / size),
tf.summary.scalar('model/loss', self.loss / size),
tf.summary.scalar('model/grad_norm',
tf.global_norm(self.grads)),
tf.summary.scalar('model/unclipped_grad_norm', self.global_grad_norm),
tf.summary.scalar('model/non_embedding_var_norm',
tf.global_norm(self.non_embedding_params)),
tf.summary.scalar('hparams/entropy_beta', self.entropy_hparam),
tf.summary.scalar('hparams/topk_loss_hparam', self.topk_loss_hparam),
tf.summary.scalar('hparams/learning_rate', self.learning_rate),
tf.summary.scalar('model/trainable_var_norm',
tf.global_norm(self.trainable_variables)),
tf.summary.scalar('loss/loss', self.loss),
tf.summary.scalar('loss/entropy', self.entropy_loss_term),
tf.summary.scalar('loss/vf', self.vf_loss_term),
tf.summary.scalar('loss/policy', self.pi_loss_term),
tf.summary.scalar('loss/offp', self.topk_loss_term)] +
[tf.summary.scalar(
'param_norms/' + _remove_prefix(scope_prefix + '/', p.name),
tf.norm(p))
for p in self.params] +
[tf.summary.scalar(
'grad_norms/' + _remove_prefix(scope_prefix + '/', p.name),
tf.norm(g))
for p, g in zip(self.params, self.grads)] +
[tf.summary.scalar(
'unclipped_grad_norms/' + _remove_prefix(scope_prefix + '/',
p.name),
tf.norm(g))
for p, g in zip(self.params, self.dense_unclipped_grads)])
self.text_summary_placeholder = tf.placeholder(tf.string, shape=[])
self.rl_text_summary_op = tf.summary.text('rl',
self.text_summary_placeholder)
def _rl_text_summary(self, session, step, npe, tot_r, num_steps,
input_case, code_output, code, reason):
"""Logs summary about a single episode and creates a text_summary for TB.
Args:
session: tf.Session instance.
step: Global training step.
npe: Number of programs executed so far.
tot_r: Total reward.
num_steps: Number of timesteps in the episode (i.e. code length).
input_case: Inputs for test cases.
code_output: Outputs produced by running the code on the inputs.
code: String representation of the code.
reason: Reason for the reward assigned by the task.
Returns:
Serialized text summary data for tensorboard.
"""
if not input_case:
input_case = ' '
if not code_output:
code_output = ' '
if not code:
code = ' '
text = (
'Tot R: **%.2f**; Len: **%d**; Reason: **%s**\n\n'
'Input: **`%s`**; Output: **`%s`**\n\nCode: **`%s`**'
% (tot_r, num_steps, reason, input_case, code_output, code))
text_summary = session.run(self.rl_text_summary_op,
{self.text_summary_placeholder: text})
logging.info(
'Step %d.\t NPE: %d\t Reason: %s.\t Tot R: %.2f.\t Length: %d. '
'\tInput: %s \tOutput: %s \tProgram: %s',
step, npe, reason, tot_r, num_steps, input_case,
code_output, code)
return text_summary
def _rl_reward_summary(self, total_rewards):
"""Create summary ops that report on episode rewards.
Creates summaries for average, median, max, and min rewards in the batch.
Args:
total_rewards: Tensor of shape [batch_size] containing the total reward
from each episode in the batch.
Returns:
tf.Summary op.
"""
tr = np.asarray(total_rewards)
reward_summary = tf.Summary(value=[
tf.Summary.Value(
tag='reward/avg',
simple_value=np.mean(tr)),
tf.Summary.Value(
tag='reward/med',
simple_value=np.median(tr)),
tf.Summary.Value(
tag='reward/max',
simple_value=np.max(tr)),
tf.Summary.Value(
tag='reward/min',
simple_value=np.min(tr))])
return reward_summary
def _iw_summary(self, session, replay_iw, replay_log_probs,
norm_replay_weights, on_policy_iw,
on_policy_log_probs):
"""Compute summaries for importance weights at a given batch.
Args:
session: tf.Session instance.
replay_iw: Importance weights for episodes from replay buffer.
replay_log_probs: Total log probabilities of the replay episodes under the
current policy.
norm_replay_weights: Normalized replay weights, i.e. values in `replay_iw`
divided by the total weight in the entire replay buffer. Note, this is
also the probability of selecting each episode from the replay buffer
(in a roulette wheel replay buffer).
on_policy_iw: Importance weights for episodes sampled from the current
policy.
on_policy_log_probs: Total log probabilities of the on-policy episodes
under the current policy.
Returns:
Serialized TF summaries. Use a summary writer to write these summaries to
disk.
"""
return session.run(
self.iw_summary_op,
{self.log_iw_replay_ph: np.log(replay_iw),
self.log_iw_policy_ph: np.log(on_policy_iw),
self.log_norm_replay_weights_ph: np.log(norm_replay_weights),
self.log_prob_replay_ph: replay_log_probs,
self.log_prob_policy_ph: on_policy_log_probs})
def _compute_iw(self, policy_log_probs, replay_weights):
"""Compute importance weights for a batch of episodes.
Arguments are iterables of length batch_size.
Args:
policy_log_probs: Log probability of each episode under the current
policy.
replay_weights: Weight of each episode in the replay buffer. 0 for
episodes not sampled from the replay buffer (i.e. sampled from the
policy).
Returns:
Numpy array of shape [batch_size] containing the importance weight for
each episode in the batch.
"""
log_total_replay_weight = log(self.experience_replay.total_weight)
# importance weight
# = 1 / [(1 - a) + a * exp(log(replay_weight / total_weight / p))]
# = 1 / ((1-a) + a*q/p)
a = float(self.replay_alpha)
a_com = 1.0 - a # compliment of a
importance_weights = np.asarray(
[1.0 / (a_com
+ a * exp((log(replay_weight) - log_total_replay_weight)
- log_p))
if replay_weight > 0 else 1.0 / a_com
for log_p, replay_weight
in zip(policy_log_probs, replay_weights)])
return importance_weights
def update_step(self, session, rl_batch, train_op, global_step_op,
return_gradients=False):
"""Perform gradient update on the model.
Args:
session: tf.Session instance.
rl_batch: RLBatch instance from data.py. Use DataManager to create a
RLBatch for each call to update_step. RLBatch contains a batch of
tasks.
train_op: A TF op which will perform the gradient update. LMAgent does not
own its training op, so that trainers can do distributed training
and construct a specialized training op.
global_step_op: A TF op which will return the current global step when
run (should not increment it).
return_gradients: If True, the gradients will be saved and returned from
this method call. This is useful for testing.
Returns:
Results from the update step in a UpdateStepResult namedtuple, including
global step, global NPE, serialized summaries, and optionally gradients.
"""
assert self.is_local
# Do update for REINFORCE or REINFORCE + replay buffer.
if self.experience_replay is None:
# Train with on-policy REINFORCE.
# Sample new programs from the policy.
num_programs_from_policy = rl_batch.batch_size
(batch_actions,
batch_values,
episode_lengths) = session.run(
[self.sampled_batch.tokens, self.sampled_batch.value,
self.sampled_batch.episode_lengths])
if episode_lengths.size == 0:
# This should not happen.
logging.warn(
'Shapes:\n'
'batch_actions.shape: %s\n'
'batch_values.shape: %s\n'
'episode_lengths.shape: %s\n',
batch_actions.shape, batch_values.shape, episode_lengths.shape)
# Compute rewards.
code_scores = compute_rewards(
rl_batch, batch_actions, episode_lengths)
code_strings = code_scores.code_strings
batch_tot_r = code_scores.total_rewards
test_cases = code_scores.test_cases
code_outputs = code_scores.code_outputs
reasons = code_scores.reasons
# Process on-policy samples.
batch_targets, batch_returns = process_episodes(
code_scores.batch_rewards, episode_lengths, a2c=self.a2c,
baselines=self.ema_by_len,
batch_values=batch_values)
batch_policy_multipliers = batch_targets
batch_emp_values = batch_returns if self.a2c else [[]]
adjusted_lengths = episode_lengths
if self.top_episodes:
assert len(self.top_episodes) > 0 # pylint: disable=g-explicit-length-test
off_policy_targets = [
item for item, _
in self.top_episodes.random_sample(self.topk_batch_size)]
off_policy_target_lengths = [len(t) for t in off_policy_targets]
off_policy_targets = utils.stack_pad(off_policy_targets, pad_axes=0,
dtype=np.int32)
offp_switch = 1
else:
off_policy_targets = [[0]]
off_policy_target_lengths = [1]
offp_switch = 0
fetches = {
'global_step': global_step_op,
'program_count': self.program_count,
'summaries': self.rl_summary_op,
'train_op': train_op,
'gradients': self.gradients_dict if return_gradients else self.no_op}
fetched = session.run(
fetches,
{self.actions: batch_actions,
self.empirical_values: batch_emp_values,
self.policy_multipliers: batch_policy_multipliers,
self.adjusted_lengths: adjusted_lengths,
self.off_policy_targets: off_policy_targets,
self.off_policy_target_lengths: off_policy_target_lengths,
self.offp_switch: offp_switch})
combined_adjusted_lengths = adjusted_lengths
combined_returns = batch_returns
else:
# Train with REINFORCE + off-policy replay buffer by using importance
# sampling.
# Sample new programs from the policy.
# Note: batch size is constant. A full batch will be sampled, but not all
# programs will be executed and added to the replay buffer. Those which
# are not executed will be discarded and not counted.
batch_actions, batch_values, episode_lengths, log_probs = session.run(
[self.sampled_batch.tokens, self.sampled_batch.value,
self.sampled_batch.episode_lengths, self.sampled_batch.log_probs])
if episode_lengths.size == 0:
# This should not happen.
logging.warn(
'Shapes:\n'
'batch_actions.shape: %s\n'
'batch_values.shape: %s\n'
'episode_lengths.shape: %s\n',
batch_actions.shape, batch_values.shape, episode_lengths.shape)
# Sample from experince replay buffer
empty_replay_buffer = (
self.experience_replay.is_empty()
if self.experience_replay is not None else True)
num_programs_from_replay_buff = (
self.num_replay_per_batch if not empty_replay_buffer else 0)
num_programs_from_policy = (
rl_batch.batch_size - num_programs_from_replay_buff)
if (not empty_replay_buffer) and num_programs_from_replay_buff:
result = self.experience_replay.sample_many(
num_programs_from_replay_buff)
experience_samples, replay_weights = zip(*result)
(replay_actions,
replay_rewards,
_, # log probs
replay_adjusted_lengths) = zip(*experience_samples)
replay_batch_actions = utils.stack_pad(replay_actions, pad_axes=0,
dtype=np.int32)
# compute log probs for replay samples under current policy
all_replay_log_probs, = session.run(
[self.given_batch.log_probs],
{self.actions: replay_batch_actions,
self.adjusted_lengths: replay_adjusted_lengths})
replay_log_probs = [
np.choose(replay_actions[i], all_replay_log_probs[i, :l].T).sum()
for i, l in enumerate(replay_adjusted_lengths)]
else:
# Replay buffer is empty. Do not sample from it.
replay_actions = None
replay_policy_multipliers = None
replay_adjusted_lengths = None
replay_log_probs = None
replay_weights = None
replay_returns = None
on_policy_weights = [0] * num_programs_from_replay_buff
assert not self.a2c # TODO(danabo): Support A2C with importance sampling.
# Compute rewards.
code_scores = compute_rewards(
rl_batch, batch_actions, episode_lengths,
batch_size=num_programs_from_policy)
code_strings = code_scores.code_strings
batch_tot_r = code_scores.total_rewards
test_cases = code_scores.test_cases
code_outputs = code_scores.code_outputs
reasons = code_scores.reasons
# Process on-policy samples.
p = num_programs_from_policy
batch_targets, batch_returns = process_episodes(
code_scores.batch_rewards, episode_lengths[:p], a2c=False,
baselines=self.ema_by_len)
batch_policy_multipliers = batch_targets
batch_emp_values = [[]]
on_policy_returns = batch_returns
# Process off-policy samples.
if (not empty_replay_buffer) and num_programs_from_replay_buff:
offp_batch_rewards = [
[0.0] * (l - 1) + [r]
for l, r in zip(replay_adjusted_lengths, replay_rewards)]
assert len(offp_batch_rewards) == num_programs_from_replay_buff
assert len(replay_adjusted_lengths) == num_programs_from_replay_buff
replay_batch_targets, replay_returns = process_episodes(
offp_batch_rewards, replay_adjusted_lengths, a2c=False,
baselines=self.ema_by_len)
# Convert 2D array back into ragged 2D list.
replay_policy_multipliers = [
replay_batch_targets[i, :l]
for i, l
in enumerate(
replay_adjusted_lengths[:num_programs_from_replay_buff])]
adjusted_lengths = episode_lengths[:num_programs_from_policy]
if self.top_episodes:
assert len(self.top_episodes) > 0 # pylint: disable=g-explicit-length-test
off_policy_targets = [
item for item, _
in self.top_episodes.random_sample(self.topk_batch_size)]
off_policy_target_lengths = [len(t) for t in off_policy_targets]
off_policy_targets = utils.stack_pad(off_policy_targets, pad_axes=0,
dtype=np.int32)
offp_switch = 1
else:
off_policy_targets = [[0]]
off_policy_target_lengths = [1]
offp_switch = 0
# On-policy episodes.
if num_programs_from_policy:
separate_actions = [
batch_actions[i, :l]
for i, l in enumerate(adjusted_lengths)]
chosen_log_probs = [
np.choose(separate_actions[i], log_probs[i, :l].T)
for i, l in enumerate(adjusted_lengths)]
new_experiences = [
(separate_actions[i],
batch_tot_r[i],
chosen_log_probs[i].sum(), l)
for i, l in enumerate(adjusted_lengths)]
on_policy_policy_multipliers = [
batch_policy_multipliers[i, :l]
for i, l in enumerate(adjusted_lengths)]
(on_policy_actions,
_, # rewards
on_policy_log_probs,
on_policy_adjusted_lengths) = zip(*new_experiences)
else:
new_experiences = []
on_policy_policy_multipliers = []
on_policy_actions = []
on_policy_log_probs = []
on_policy_adjusted_lengths = []
if (not empty_replay_buffer) and num_programs_from_replay_buff:
# Look for new experiences in replay buffer. Assign weight if an episode
# is in the buffer.
on_policy_weights = [0] * num_programs_from_policy
for i, cs in enumerate(code_strings):
if self.experience_replay.has_key(cs):
on_policy_weights[i] = self.experience_replay.get_weight(cs)
# Randomly select on-policy or off policy episodes to train on.
combined_actions = join(replay_actions, on_policy_actions)
combined_policy_multipliers = join(
replay_policy_multipliers, on_policy_policy_multipliers)
combined_adjusted_lengths = join(
replay_adjusted_lengths, on_policy_adjusted_lengths)
combined_returns = join(replay_returns, on_policy_returns)
combined_actions = utils.stack_pad(combined_actions, pad_axes=0)
combined_policy_multipliers = utils.stack_pad(combined_policy_multipliers,
pad_axes=0)
# P
combined_on_policy_log_probs = join(replay_log_probs, on_policy_log_probs)
# Q
# Assume weight is zero for all sequences sampled from the policy.
combined_q_weights = join(replay_weights, on_policy_weights)
# Importance adjustment. Naive formulation:
# E_{x~p}[f(x)] ~= 1/N sum_{x~p}(f(x)) ~= 1/N sum_{x~q}(f(x) * p(x)/q(x)).
# p(x) is the policy, and q(x) is the off-policy distribution, i.e. replay
# buffer distribution. Importance weight w(x) = p(x) / q(x).
# Instead of sampling from the replay buffer only, we sample from a
# mixture distribution of the policy and replay buffer.
# We are sampling from the mixture a*q(x) + (1-a)*p(x), where 0 <= a <= 1.
# Thus the importance weight w(x) = p(x) / (a*q(x) + (1-a)*p(x))
# = 1 / ((1-a) + a*q(x)/p(x)) where q(x) is 0 for x sampled from the
# policy.
# Note: a = self.replay_alpha
if empty_replay_buffer:
# The replay buffer is empty.
# Do no gradient update this step. The replay buffer will have stuff in
# it next time.
combined_policy_multipliers *= 0
elif not num_programs_from_replay_buff:
combined_policy_multipliers = np.ones([len(combined_actions), 1],
dtype=np.float32)
else:
# If a < 1 compute importance weights
# importance weight
# = 1 / [(1 - a) + a * exp(log(replay_weight / total_weight / p))]
# = 1 / ((1-a) + a*q/p)
importance_weights = self._compute_iw(combined_on_policy_log_probs,
combined_q_weights)
if self.config.iw_normalize:
importance_weights *= (
float(rl_batch.batch_size) / importance_weights.sum())
combined_policy_multipliers *= importance_weights.reshape(-1, 1)
# Train on replay batch, top-k MLE.
assert self.program_count is not None
fetches = {
'global_step': global_step_op,
'program_count': self.program_count,
'summaries': self.rl_summary_op,
'train_op': train_op,
'gradients': self.gradients_dict if return_gradients else self.no_op}
fetched = session.run(
fetches,
{self.actions: combined_actions,
self.empirical_values: [[]], # replay_emp_values,
self.policy_multipliers: combined_policy_multipliers,
self.adjusted_lengths: combined_adjusted_lengths,
self.off_policy_targets: off_policy_targets,
self.off_policy_target_lengths: off_policy_target_lengths,
self.offp_switch: offp_switch})
# Add to experience replay buffer.
self.experience_replay.add_many(
objs=new_experiences,
weights=[exp(r / self.replay_temperature) for r in batch_tot_r],
keys=code_strings)
# Update program count.
session.run(
[self.program_count_add_op],
{self.program_count_add_ph: num_programs_from_policy})
# Update EMA baselines on the mini-batch which we just did traning on.
if not self.a2c:
for i in xrange(rl_batch.batch_size):
episode_length = combined_adjusted_lengths[i]
empirical_returns = combined_returns[i, :episode_length]
for j in xrange(episode_length):
# Update ema_baselines in place.
self.ema_by_len[j] = (
self.ema_baseline_decay * self.ema_by_len[j]
+ (1 - self.ema_baseline_decay) * empirical_returns[j])
global_step = fetched['global_step']
global_npe = fetched['program_count']
core_summaries = fetched['summaries']
summaries_list = [core_summaries]
if num_programs_from_policy:
s_i = 0
text_summary = self._rl_text_summary(
session,
global_step,
global_npe,
batch_tot_r[s_i],
episode_lengths[s_i], test_cases[s_i],
code_outputs[s_i], code_strings[s_i], reasons[s_i])
reward_summary = self._rl_reward_summary(batch_tot_r)
is_best = False
if self.global_best_reward_fn:
# Save best reward.
best_reward = np.max(batch_tot_r)
is_best = self.global_best_reward_fn(session, best_reward)
if self.found_solution_op is not None and 'correct' in reasons:
session.run(self.found_solution_op)
# Save program to disk for record keeping.
if self.stop_on_success:
solutions = [
{'code': code_strings[i], 'reward': batch_tot_r[i],
'npe': global_npe}
for i in xrange(len(reasons)) if reasons[i] == 'correct']
elif is_best:
solutions = [
{'code': code_strings[np.argmax(batch_tot_r)],
'reward': np.max(batch_tot_r),
'npe': global_npe}]
else:
solutions = []
if solutions:
if self.assign_code_solution_fn:
self.assign_code_solution_fn(session, solutions[0]['code'])
with tf.gfile.FastGFile(self.logging_file, 'a') as writer:
for solution_dict in solutions:
writer.write(str(solution_dict) + '\n')
max_i = np.argmax(batch_tot_r)
max_tot_r = batch_tot_r[max_i]
if max_tot_r >= self.top_reward:
if max_tot_r >= self.top_reward:
self.top_reward = max_tot_r
logging.info('Top code: r=%.2f, \t%s', max_tot_r, code_strings[max_i])
if self.top_episodes is not None:
self.top_episodes.push(
max_tot_r, tuple(batch_actions[max_i, :episode_lengths[max_i]]))
summaries_list += [text_summary, reward_summary]
if self.do_iw_summaries and not empty_replay_buffer:
# prob of replay samples under replay buffer sampling.
norm_replay_weights = [
w / self.experience_replay.total_weight
for w in replay_weights]
replay_iw = self._compute_iw(replay_log_probs, replay_weights)
on_policy_iw = self._compute_iw(on_policy_log_probs, on_policy_weights)
summaries_list.append(
self._iw_summary(
session, replay_iw, replay_log_probs, norm_replay_weights,
on_policy_iw, on_policy_log_probs))
return UpdateStepResult(
global_step=global_step,
global_npe=global_npe,
summaries_list=summaries_list,
gradients_dict=fetched['gradients'])
def io_to_text(io_case, io_type):
if isinstance(io_case, misc.IOTuple):
# If there are many strings, join them with ','.
return ','.join([io_to_text(e, io_type) for e in io_case])
if io_type == misc.IOType.string:
# There is one string. Return it.
return misc.tokens_to_text(io_case)
if (io_type == misc.IOType.integer
or io_type == misc.IOType.boolean):
if len(io_case) == 1:
return str(io_case[0])
return str(io_case)
CodeScoreInfo = namedtuple(
'CodeScoreInfo',
['code_strings', 'batch_rewards', 'total_rewards', 'test_cases',
'code_outputs', 'reasons'])
def compute_rewards(rl_batch, batch_actions, episode_lengths, batch_size=None):
"""Compute rewards for each episode in the batch.
Args:
rl_batch: A data.RLBatch instance. This holds information about the task
each episode is solving, and a reward function for each episode.
batch_actions: Contains batch of episodes. Each sequence of actions will be
converted into a BF program and then scored. A numpy array of shape
[batch_size, max_sequence_length].
episode_lengths: The sequence length of each episode in the batch. Iterable
of length batch_size.
batch_size: (optional) number of programs to score. Use this to limit the
number of programs executed from this batch. For example, when doing
importance sampling some of the on-policy episodes will be discarded
and they should not be executed. `batch_size` can be less than or equal
to the size of the input batch.
Returns:
CodeScoreInfo namedtuple instance. This holds not just the computed rewards,
but additional information computed during code execution which can be used
for debugging and monitoring. this includes: BF code strings, test cases
the code was executed on, code outputs from those test cases, and reasons
for success or failure.
"""
code_strings = [
''.join([misc.bf_int2char(a) for a in action_sequence[:l]])
for action_sequence, l in zip(batch_actions, episode_lengths)]
if batch_size is None:
batch_size = len(code_strings)
else:
assert batch_size <= len(code_strings)
code_strings = code_strings[:batch_size]
if isinstance(rl_batch.reward_fns, (list, tuple)):
# reward_fns is a list of functions, same length as code_strings.
assert len(rl_batch.reward_fns) >= batch_size
r_fn_results = [
rl_batch.reward_fns[i](code_strings[i]) for i in xrange(batch_size)]
else:
# reward_fns is allowed to be one function which processes a batch of code
# strings. This is useful for efficiency and batch level computation.
r_fn_results = rl_batch.reward_fns(code_strings)
# Expecting that r_fn returns a list of rewards. Length of list equals
# length of the code string (including EOS char).
batch_rewards = [r.episode_rewards for r in r_fn_results]
total_rewards = [sum(b) for b in batch_rewards]
test_cases = [io_to_text(r.input_case, r.input_type) for r in r_fn_results]
code_outputs = [io_to_text(r.code_output, r.output_type)
for r in r_fn_results]
reasons = [r.reason for r in r_fn_results]
return CodeScoreInfo(
code_strings=code_strings,
batch_rewards=batch_rewards,
total_rewards=total_rewards,
test_cases=test_cases,
code_outputs=code_outputs,
reasons=reasons)
def process_episodes(
batch_rewards, episode_lengths, a2c=False, baselines=None,
batch_values=None):
"""Compute REINFORCE targets.
REINFORCE here takes the form:
grad_t = grad[log(pi(a_t|c_t))*target_t]
where c_t is context: i.e. RNN state or environment state (or both).
Two types of targets are supported:
1) Advantage actor critic (a2c).
2) Vanilla REINFORCE with baseline.
Args:
batch_rewards: Rewards received in each episode in the batch. A numpy array
of shape [batch_size, max_sequence_length]. Note, these are per-timestep
rewards, not total reward.
episode_lengths: Length of each episode. An iterable of length batch_size.
a2c: A bool. Whether to compute a2c targets (True) or vanilla targets
(False).
baselines: If a2c is False, provide baselines for each timestep. This is a
list (or indexable container) of length max_time. Note: baselines are
shared across all episodes, which is why there is no batch dimension.
It is up to the caller to update baselines accordingly.
batch_values: If a2c is True, provide values computed by a value estimator.
A numpy array of shape [batch_size, max_sequence_length].
Returns:
batch_targets: REINFORCE targets for each episode and timestep. A numpy
array of shape [batch_size, max_sequence_length].
batch_returns: Returns computed for each episode and timestep. This is for
reference, and is not used in the REINFORCE gradient update (but was
used to compute the targets). A numpy array of shape
[batch_size, max_sequence_length].
"""
num_programs = len(batch_rewards)
assert num_programs <= len(episode_lengths)
batch_returns = [None] * num_programs
batch_targets = [None] * num_programs
for i in xrange(num_programs):
episode_length = episode_lengths[i]
assert len(batch_rewards[i]) == episode_length
# Compute target for each timestep.
# If we are computing A2C:
# target_t = advantage_t = R_t - V(c_t)
# where V(c_t) is a learned value function (provided as `values`).
# Otherwise:
# target_t = R_t - baselines[t]
# where `baselines` are provided.
# In practice we use a more generalized formulation of advantage. See docs
# for `discounted_advantage_and_rewards`.
if a2c:
# Compute advantage.
assert batch_values is not None
episode_values = batch_values[i, :episode_length]
episode_rewards = batch_rewards[i]
emp_val, gen_adv = rollout_lib.discounted_advantage_and_rewards(
episode_rewards, episode_values, gamma=1.0, lambda_=1.0)
batch_returns[i] = emp_val
batch_targets[i] = gen_adv
else:
# Compute return for each timestep. See section 3 of
# https://arxiv.org/pdf/1602.01783.pdf
assert baselines is not None
empirical_returns = rollout_lib.discount(batch_rewards[i], gamma=1.0)
targets = [None] * episode_length
for j in xrange(episode_length):
targets[j] = empirical_returns[j] - baselines[j]
batch_returns[i] = empirical_returns
batch_targets[i] = targets
batch_returns = utils.stack_pad(batch_returns, 0)
if num_programs:
batch_targets = utils.stack_pad(batch_targets, 0)
else:
batch_targets = np.array([], dtype=np.float32)
return (batch_targets, batch_returns)
|