File size: 24,003 Bytes
18ddfe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Wrapper for providing semantic segmentation video data."""
import tensorflow as tf
from feelvos import input_preprocess
from feelvos import model
from feelvos.utils import mask_damaging
from feelvos.utils import train_utils
slim = tf.contrib.slim
dataset_data_provider = slim.dataset_data_provider
MIN_LABEL_COUNT = 10
def decode_image_sequence(tensor, image_format='jpeg', shape=None,
channels=3, raw_dtype=tf.uint8):
"""Decodes a sequence of images.
Args:
tensor: the tensor of strings to decode, shape: [num_images]
image_format: a string (possibly tensor) with the format of the image.
Options include 'jpeg', 'png', and 'raw'.
shape: a list or tensor of the decoded image shape for a single image.
channels: if 'shape' is None, the third dimension of the image is set to
this value.
raw_dtype: if the image is encoded as raw bytes, this is the method of
decoding the bytes into values.
Returns:
The decoded images with shape [time, height, width, channels].
"""
handler = slim.tfexample_decoder.Image(
shape=shape, channels=channels, dtype=raw_dtype, repeated=True)
return handler.tensors_to_item({'image/encoded': tensor,
'image/format': image_format})
def _get_data(data_provider, dataset_split, video_frames_are_decoded):
"""Gets data from data provider.
Args:
data_provider: An object of slim.data_provider.
dataset_split: Dataset split.
video_frames_are_decoded: Boolean, whether the video frames are already
decoded
Returns:
image: Image Tensor.
label: Label Tensor storing segmentation annotations.
object_label: An integer refers to object_label according to labelmap. If
the example has more than one object_label, take the first one.
image_name: Image name.
height: Image height.
width: Image width.
video_id: String tensor representing the name of the video.
Raises:
ValueError: Failed to find label.
"""
if video_frames_are_decoded:
image, = data_provider.get(['image'])
else:
image, = data_provider.get(['image/encoded'])
# Some datasets do not contain image_name.
if 'image_name' in data_provider.list_items():
image_name, = data_provider.get(['image_name'])
else:
image_name = tf.constant('')
height, width = data_provider.get(['height', 'width'])
label = None
if dataset_split != 'test':
if video_frames_are_decoded:
if 'labels_class' not in data_provider.list_items():
raise ValueError('Failed to find labels.')
label, = data_provider.get(['labels_class'])
else:
key = 'segmentation/object/encoded'
if key not in data_provider.list_items():
raise ValueError('Failed to find labels.')
label, = data_provider.get([key])
object_label = None
video_id, = data_provider.get(['video_id'])
return image, label, object_label, image_name, height, width, video_id
def _has_foreground_and_background_in_first_frame(label, subsampling_factor):
"""Checks if the labels have foreground and background in the first frame.
Args:
label: Label tensor of shape [num_frames, height, width, 1].
subsampling_factor: Integer, the subsampling factor.
Returns:
Boolean, whether the labels have foreground and background in the first
frame.
"""
h, w = train_utils.resolve_shape(label)[1:3]
label_downscaled = tf.squeeze(
tf.image.resize_nearest_neighbor(label[0, tf.newaxis],
[h // subsampling_factor,
w // subsampling_factor],
align_corners=True),
axis=0)
is_bg = tf.equal(label_downscaled, 0)
is_fg = tf.logical_not(is_bg)
# Just using reduce_any was not robust enough, so lets make sure the count
# is above MIN_LABEL_COUNT.
fg_count = tf.reduce_sum(tf.cast(is_fg, tf.int32))
bg_count = tf.reduce_sum(tf.cast(is_bg, tf.int32))
has_bg = tf.greater_equal(fg_count, MIN_LABEL_COUNT)
has_fg = tf.greater_equal(bg_count, MIN_LABEL_COUNT)
return tf.logical_and(has_bg, has_fg)
def _has_foreground_and_background_in_first_frame_2(label,
decoder_output_stride):
"""Checks if the labels have foreground and background in the first frame.
Second attempt, this time we use the actual output dimension for resizing.
Args:
label: Label tensor of shape [num_frames, height, width, 1].
decoder_output_stride: Integer, the stride of the decoder output.
Returns:
Boolean, whether the labels have foreground and background in the first
frame.
"""
h, w = train_utils.resolve_shape(label)[1:3]
h_sub = model.scale_dimension(h, 1.0 / decoder_output_stride)
w_sub = model.scale_dimension(w, 1.0 / decoder_output_stride)
label_downscaled = tf.squeeze(
tf.image.resize_nearest_neighbor(label[0, tf.newaxis], [h_sub, w_sub],
align_corners=True), axis=0)
is_bg = tf.equal(label_downscaled, 0)
is_fg = tf.logical_not(is_bg)
# Just using reduce_any was not robust enough, so lets make sure the count
# is above MIN_LABEL_COUNT.
fg_count = tf.reduce_sum(tf.cast(is_fg, tf.int32))
bg_count = tf.reduce_sum(tf.cast(is_bg, tf.int32))
has_bg = tf.greater_equal(fg_count, MIN_LABEL_COUNT)
has_fg = tf.greater_equal(bg_count, MIN_LABEL_COUNT)
return tf.logical_and(has_bg, has_fg)
def _has_enough_pixels_of_each_object_in_first_frame(
label, decoder_output_stride):
"""Checks if for each object (incl. background) enough pixels are visible.
During test time, we will usually not see a reference frame in which only
very few pixels of one object are visible. These cases can be problematic
during training, especially if more than the 1-nearest neighbor is used.
That's why this function can be used to detect and filter these cases.
Args:
label: Label tensor of shape [num_frames, height, width, 1].
decoder_output_stride: Integer, the stride of the decoder output.
Returns:
Boolean, whether the labels have enough pixels of each object in the first
frame.
"""
h, w = train_utils.resolve_shape(label)[1:3]
h_sub = model.scale_dimension(h, 1.0 / decoder_output_stride)
w_sub = model.scale_dimension(w, 1.0 / decoder_output_stride)
label_downscaled = tf.squeeze(
tf.image.resize_nearest_neighbor(label[0, tf.newaxis], [h_sub, w_sub],
align_corners=True), axis=0)
_, _, counts = tf.unique_with_counts(
tf.reshape(label_downscaled, [-1]))
has_enough_pixels_per_object = tf.reduce_all(
tf.greater_equal(counts, MIN_LABEL_COUNT))
return has_enough_pixels_per_object
def get(dataset,
num_frames_per_video,
crop_size,
batch_size,
min_resize_value=None,
max_resize_value=None,
resize_factor=None,
min_scale_factor=1.,
max_scale_factor=1.,
scale_factor_step_size=0,
preprocess_image_and_label=True,
num_readers=1,
num_threads=1,
dataset_split=None,
is_training=True,
model_variant=None,
batch_capacity_factor=32,
video_frames_are_decoded=False,
decoder_output_stride=None,
first_frame_finetuning=False,
sample_only_first_frame_for_finetuning=False,
sample_adjacent_and_consistent_query_frames=False,
remap_labels_to_reference_frame=True,
generate_prev_frame_mask_by_mask_damaging=False,
three_frame_dataset=False,
add_prev_frame_label=True):
"""Gets the dataset split for semantic segmentation.
This functions gets the dataset split for semantic segmentation. In
particular, it is a wrapper of (1) dataset_data_provider which returns the raw
dataset split, (2) input_preprcess which preprocess the raw data, and (3) the
Tensorflow operation of batching the preprocessed data. Then, the output could
be directly used by training, evaluation or visualization.
Args:
dataset: An instance of slim Dataset.
num_frames_per_video: The number of frames used per video
crop_size: Image crop size [height, width].
batch_size: Batch size.
min_resize_value: Desired size of the smaller image side.
max_resize_value: Maximum allowed size of the larger image side.
resize_factor: Resized dimensions are multiple of factor plus one.
min_scale_factor: Minimum scale factor value.
max_scale_factor: Maximum scale factor value.
scale_factor_step_size: The step size from min scale factor to max scale
factor. The input is randomly scaled based on the value of
(min_scale_factor, max_scale_factor, scale_factor_step_size).
preprocess_image_and_label: Boolean variable specifies if preprocessing of
image and label will be performed or not.
num_readers: Number of readers for data provider.
num_threads: Number of threads for batching data.
dataset_split: Dataset split.
is_training: Is training or not.
model_variant: Model variant (string) for choosing how to mean-subtract the
images. See feature_extractor.network_map for supported model variants.
batch_capacity_factor: Batch capacity factor affecting the training queue
batch capacity.
video_frames_are_decoded: Boolean, whether the video frames are already
decoded
decoder_output_stride: Integer, the stride of the decoder output.
first_frame_finetuning: Boolean, whether to only sample the first frame
for fine-tuning.
sample_only_first_frame_for_finetuning: Boolean, whether to only sample the
first frame during fine-tuning. This should be False when using lucid or
wonderland data, but true when fine-tuning on the first frame only.
Only has an effect if first_frame_finetuning is True.
sample_adjacent_and_consistent_query_frames: Boolean, if true, the query
frames (all but the first frame which is the reference frame) will be
sampled such that they are adjacent video frames and have the same
crop coordinates and flip augmentation.
remap_labels_to_reference_frame: Boolean, whether to remap the labels of
the query frames to match the labels of the (downscaled) reference frame.
If a query frame contains a label which is not present in the reference,
it will be mapped to background.
generate_prev_frame_mask_by_mask_damaging: Boolean, whether to generate
the masks used as guidance from the previous frame by damaging the
ground truth mask.
three_frame_dataset: Boolean, whether the dataset has exactly three frames
per video of which the first is to be used as reference and the two
others are consecutive frames to be used as query frames.
add_prev_frame_label: Boolean, whether to sample one more frame before the
first query frame to obtain a previous frame label. Only has an effect,
if sample_adjacent_and_consistent_query_frames is True and
generate_prev_frame_mask_by_mask_damaging is False.
Returns:
A dictionary of batched Tensors for semantic segmentation.
Raises:
ValueError: dataset_split is None, or Failed to find labels.
"""
if dataset_split is None:
raise ValueError('Unknown dataset split.')
if model_variant is None:
tf.logging.warning('Please specify a model_variant. See '
'feature_extractor.network_map for supported model '
'variants.')
data_provider = dataset_data_provider.DatasetDataProvider(
dataset,
num_readers=num_readers,
num_epochs=None if is_training else 1,
shuffle=is_training)
image, label, object_label, image_name, height, width, video_id = _get_data(
data_provider, dataset_split, video_frames_are_decoded)
sampling_is_valid = tf.constant(True)
if num_frames_per_video is not None:
total_num_frames = tf.shape(image)[0]
if first_frame_finetuning or three_frame_dataset:
if sample_only_first_frame_for_finetuning:
assert not sample_adjacent_and_consistent_query_frames, (
'this option does not make sense for sampling only first frame.')
# Sample the first frame num_frames_per_video times.
sel_indices = tf.tile(tf.constant(0, dtype=tf.int32)[tf.newaxis],
multiples=[num_frames_per_video])
else:
if sample_adjacent_and_consistent_query_frames:
if add_prev_frame_label:
num_frames_per_video += 1
# Since this is first frame fine-tuning, we'll for now assume that
# each sequence has exactly 3 images: the ref frame and 2 adjacent
# query frames.
assert num_frames_per_video == 3
with tf.control_dependencies([tf.assert_equal(total_num_frames, 3)]):
sel_indices = tf.constant([1, 2], dtype=tf.int32)
else:
# Sample num_frames_per_video - 1 query frames which are not the
# first frame.
sel_indices = tf.random_shuffle(
tf.range(1, total_num_frames))[:(num_frames_per_video - 1)]
# Concat first frame as reference frame to the front.
sel_indices = tf.concat([tf.constant(0, dtype=tf.int32)[tf.newaxis],
sel_indices], axis=0)
else:
if sample_adjacent_and_consistent_query_frames:
if add_prev_frame_label:
# Sample one more frame which we can use to provide initial softmax
# feedback.
num_frames_per_video += 1
ref_idx = tf.random_shuffle(tf.range(total_num_frames))[0]
sampling_is_valid = tf.greater_equal(total_num_frames,
num_frames_per_video)
def sample_query_start_idx():
return tf.random_shuffle(
tf.range(total_num_frames - num_frames_per_video + 1))[0]
query_start_idx = tf.cond(sampling_is_valid, sample_query_start_idx,
lambda: tf.constant(0, dtype=tf.int32))
def sample_sel_indices():
return tf.concat(
[ref_idx[tf.newaxis],
tf.range(
query_start_idx,
query_start_idx + (num_frames_per_video - 1))], axis=0)
sel_indices = tf.cond(
sampling_is_valid, sample_sel_indices,
lambda: tf.zeros((num_frames_per_video,), dtype=tf.int32))
else:
# Randomly sample some frames from the video.
sel_indices = tf.random_shuffle(
tf.range(total_num_frames))[:num_frames_per_video]
image = tf.gather(image, sel_indices, axis=0)
if not video_frames_are_decoded:
image = decode_image_sequence(image)
if label is not None:
if num_frames_per_video is not None:
label = tf.gather(label, sel_indices, axis=0)
if not video_frames_are_decoded:
label = decode_image_sequence(label, image_format='png', channels=1)
# Sometimes, label is saved as [num_frames_per_video, height, width] or
# [num_frames_per_video, height, width, 1]. We change it to be
# [num_frames_per_video, height, width, 1].
if label.shape.ndims == 3:
label = tf.expand_dims(label, 3)
elif label.shape.ndims == 4 and label.shape.dims[3] == 1:
pass
else:
raise ValueError('Input label shape must be '
'[num_frames_per_video, height, width],'
' or [num_frames, height, width, 1]. '
'Got {}'.format(label.shape.ndims))
label.set_shape([None, None, None, 1])
# Add size of first dimension since tf can't figure it out automatically.
image.set_shape((num_frames_per_video, None, None, None))
if label is not None:
label.set_shape((num_frames_per_video, None, None, None))
preceding_frame_label = None
if preprocess_image_and_label:
if num_frames_per_video is None:
raise ValueError('num_frame_per_video must be specified for preproc.')
original_images = []
images = []
labels = []
if sample_adjacent_and_consistent_query_frames:
num_frames_individual_preproc = 1
else:
num_frames_individual_preproc = num_frames_per_video
for frame_idx in range(num_frames_individual_preproc):
original_image_t, image_t, label_t = (
input_preprocess.preprocess_image_and_label(
image[frame_idx],
label[frame_idx],
crop_height=crop_size[0] if crop_size is not None else None,
crop_width=crop_size[1] if crop_size is not None else None,
min_resize_value=min_resize_value,
max_resize_value=max_resize_value,
resize_factor=resize_factor,
min_scale_factor=min_scale_factor,
max_scale_factor=max_scale_factor,
scale_factor_step_size=scale_factor_step_size,
ignore_label=dataset.ignore_label,
is_training=is_training,
model_variant=model_variant))
original_images.append(original_image_t)
images.append(image_t)
labels.append(label_t)
if sample_adjacent_and_consistent_query_frames:
imgs_for_preproc = [image[frame_idx] for frame_idx in
range(1, num_frames_per_video)]
labels_for_preproc = [label[frame_idx] for frame_idx in
range(1, num_frames_per_video)]
original_image_rest, image_rest, label_rest = (
input_preprocess.preprocess_images_and_labels_consistently(
imgs_for_preproc,
labels_for_preproc,
crop_height=crop_size[0] if crop_size is not None else None,
crop_width=crop_size[1] if crop_size is not None else None,
min_resize_value=min_resize_value,
max_resize_value=max_resize_value,
resize_factor=resize_factor,
min_scale_factor=min_scale_factor,
max_scale_factor=max_scale_factor,
scale_factor_step_size=scale_factor_step_size,
ignore_label=dataset.ignore_label,
is_training=is_training,
model_variant=model_variant))
original_images.extend(original_image_rest)
images.extend(image_rest)
labels.extend(label_rest)
assert len(original_images) == num_frames_per_video
assert len(images) == num_frames_per_video
assert len(labels) == num_frames_per_video
if remap_labels_to_reference_frame:
# Remap labels to indices into the labels of the (downscaled) reference
# frame, or 0, i.e. background, for labels which are not present
# in the reference.
reference_labels = labels[0][tf.newaxis]
h, w = train_utils.resolve_shape(reference_labels)[1:3]
embedding_height = model.scale_dimension(
h, 1.0 / decoder_output_stride)
embedding_width = model.scale_dimension(
w, 1.0 / decoder_output_stride)
reference_labels_embedding_size = tf.squeeze(
tf.image.resize_nearest_neighbor(
reference_labels, tf.stack([embedding_height, embedding_width]),
align_corners=True),
axis=0)
# Get sorted unique labels in the reference frame.
labels_in_ref_frame, _ = tf.unique(
tf.reshape(reference_labels_embedding_size, [-1]))
labels_in_ref_frame = tf.contrib.framework.sort(labels_in_ref_frame)
for idx in range(1, len(labels)):
ref_label_mask = tf.equal(
labels[idx],
labels_in_ref_frame[tf.newaxis, tf.newaxis, :])
remapped = tf.argmax(tf.cast(ref_label_mask, tf.uint8), axis=-1,
output_type=tf.int32)
# Set to 0 if label is not present
is_in_ref = tf.reduce_any(ref_label_mask, axis=-1)
remapped *= tf.cast(is_in_ref, tf.int32)
labels[idx] = remapped[..., tf.newaxis]
if sample_adjacent_and_consistent_query_frames:
if first_frame_finetuning and generate_prev_frame_mask_by_mask_damaging:
preceding_frame_label = mask_damaging.damage_masks(labels[1])
elif add_prev_frame_label:
# Discard the image of the additional frame and take the label as
# initialization for softmax feedback.
original_images = [original_images[0]] + original_images[2:]
preceding_frame_label = labels[1]
images = [images[0]] + images[2:]
labels = [labels[0]] + labels[2:]
num_frames_per_video -= 1
original_image = tf.stack(original_images, axis=0)
image = tf.stack(images, axis=0)
label = tf.stack(labels, axis=0)
else:
if label is not None:
# Need to set label shape due to batching.
label.set_shape([num_frames_per_video,
None if crop_size is None else crop_size[0],
None if crop_size is None else crop_size[1],
1])
original_image = tf.to_float(tf.zeros_like(label))
if crop_size is None:
height = tf.shape(image)[1]
width = tf.shape(image)[2]
else:
height = crop_size[0]
width = crop_size[1]
sample = {'image': image,
'image_name': image_name,
'height': height,
'width': width,
'video_id': video_id}
if label is not None:
sample['label'] = label
if object_label is not None:
sample['object_label'] = object_label
if preceding_frame_label is not None:
sample['preceding_frame_label'] = preceding_frame_label
if not is_training:
# Original image is only used during visualization.
sample['original_image'] = original_image
if is_training:
if first_frame_finetuning:
keep_input = tf.constant(True)
else:
keep_input = tf.logical_and(sampling_is_valid, tf.logical_and(
_has_enough_pixels_of_each_object_in_first_frame(
label, decoder_output_stride),
_has_foreground_and_background_in_first_frame_2(
label, decoder_output_stride)))
batched = tf.train.maybe_batch(sample,
keep_input=keep_input,
batch_size=batch_size,
num_threads=num_threads,
capacity=batch_capacity_factor * batch_size,
dynamic_pad=True)
else:
batched = tf.train.batch(sample,
batch_size=batch_size,
num_threads=num_threads,
capacity=batch_capacity_factor * batch_size,
dynamic_pad=True)
# Flatten from [batch, num_frames_per_video, ...] to
# batch * num_frames_per_video, ...].
cropped_height = train_utils.resolve_shape(batched['image'])[2]
cropped_width = train_utils.resolve_shape(batched['image'])[3]
if num_frames_per_video is None:
first_dim = -1
else:
first_dim = batch_size * num_frames_per_video
batched['image'] = tf.reshape(batched['image'],
[first_dim, cropped_height, cropped_width, 3])
if label is not None:
batched['label'] = tf.reshape(batched['label'],
[first_dim, cropped_height, cropped_width, 1])
return batched
|