File size: 35,915 Bytes
18ddfe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 |
# Copyright 2017 Google, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Generates toy optimization problems.
This module contains a base class, Problem, that defines a minimal interface
for optimization problems, and a few specific problem types that subclass it.
Test functions for optimization: http://www.sfu.ca/~ssurjano/optimization.html
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from learned_optimizer.problems import problem_spec as prob_spec
tf.app.flags.DEFINE_float("l2_reg_scale", 1e-3,
"""Scaling factor for parameter value regularization
in softmax classifier problems.""")
FLAGS = tf.app.flags.FLAGS
EPSILON = 1e-6
MAX_SEED = 4294967295
PARAMETER_SCOPE = "parameters"
_Spec = prob_spec.Spec
class Problem(object):
"""Base class for optimization problems.
This defines an interface for optimization problems, including objective and
gradients functions and a feed_generator function that yields data to pass to
feed_dict in tensorflow.
Subclasses of Problem must (at the minimum) override the objective method,
which computes the objective/loss/cost to minimize, and specify the desired
shape of the parameters in a list in the param_shapes attribute.
"""
def __init__(self, param_shapes, random_seed, noise_stdev, init_fn=None):
"""Initializes a global random seed for the problem.
Args:
param_shapes: A list of tuples defining the expected shapes of the
parameters for this problem
random_seed: Either an integer (or None, in which case the seed is
randomly drawn)
noise_stdev: Strength (standard deviation) of added gradient noise
init_fn: A function taking a tf.Session object that is used to
initialize the problem's variables.
Raises:
ValueError: If the random_seed is not an integer and not None
"""
if random_seed is not None and not isinstance(random_seed, int):
raise ValueError("random_seed must be an integer or None")
# Pick a random seed.
self.random_seed = (np.random.randint(MAX_SEED) if random_seed is None
else random_seed)
# Store the noise level.
self.noise_stdev = noise_stdev
# Set the random seed to ensure any random data in the problem is the same.
np.random.seed(self.random_seed)
# Store the parameter shapes.
self.param_shapes = param_shapes
if init_fn is not None:
self.init_fn = init_fn
else:
self.init_fn = lambda _: None
def init_tensors(self, seed=None):
"""Returns a list of tensors with the given shape."""
return [tf.random_normal(shape, seed=seed) for shape in self.param_shapes]
def init_variables(self, seed=None):
"""Returns a list of variables with the given shape."""
with tf.variable_scope(PARAMETER_SCOPE):
params = [tf.Variable(param) for param in self.init_tensors(seed)]
return params
def objective(self, parameters, data=None, labels=None):
"""Computes the objective given a list of parameters.
Args:
parameters: The parameters to optimize (as a list of tensors)
data: An optional batch of data for calculating objectives
labels: An optional batch of corresponding labels
Returns:
A scalar tensor representing the objective value
"""
raise NotImplementedError
def gradients(self, objective, parameters):
"""Compute gradients of the objective with respect to the parameters.
Args:
objective: The objective op (e.g. output of self.objective())
parameters: A list of tensors (the parameters to optimize)
Returns:
A list of tensors representing the gradient for each parameter,
returned in the same order as the given list
"""
grads = tf.gradients(objective, list(parameters))
noisy_grads = []
for grad in grads:
if isinstance(grad, tf.IndexedSlices):
noise = self.noise_stdev * tf.random_normal(tf.shape(grad.values))
new_grad = tf.IndexedSlices(grad.values + noise, grad.indices)
else:
new_grad = grad + self.noise_stdev * tf.random_normal(grad.get_shape())
noisy_grads.append(new_grad)
return noisy_grads
class Quadratic(Problem):
"""Optimizes a random quadratic function.
The objective is: f(x) = (1/2) ||Wx - y||_2^2
where W is a random Gaussian matrix and y is a random Gaussian vector.
"""
def __init__(self, ndim, random_seed=None, noise_stdev=0.0):
"""Initializes a random quadratic problem."""
param_shapes = [(ndim, 1)]
super(Quadratic, self).__init__(param_shapes, random_seed, noise_stdev)
# Generate a random problem instance.
self.w = np.random.randn(ndim, ndim).astype("float32")
self.y = np.random.randn(ndim, 1).astype("float32")
def objective(self, params, data=None, labels=None):
"""Quadratic objective (see base class for details)."""
return tf.nn.l2_loss(tf.matmul(self.w, params[0]) - self.y)
class SoftmaxClassifier(Problem):
"""Helper functions for supervised softmax classification problems."""
def init_tensors(self, seed=None):
"""Returns a list of tensors with the given shape."""
return [tf.random_normal(shape, seed=seed) * 1.2 / np.sqrt(shape[0])
for shape in self.param_shapes]
def inference(self, params, data):
"""Computes logits given parameters and data.
Args:
params: List of parameter tensors or variables
data: Batch of features with samples along the first dimension
Returns:
logits: Un-normalized logits with shape (num_samples, num_classes)
"""
raise NotImplementedError
def objective(self, params, data, labels):
"""Computes the softmax cross entropy.
Args:
params: List of parameter tensors or variables
data: Batch of features with samples along the first dimension
labels: Vector of labels with the same number of samples as the data
Returns:
loss: Softmax cross entropy loss averaged over the samples in the batch
Raises:
ValueError: If the objective is to be computed over >2 classes, because
this operation is broken in tensorflow at the moment.
"""
# Forward pass.
logits = self.inference(params, data)
# Compute the loss.
l2reg = [tf.reduce_sum(param ** 2) for param in params]
if int(logits.get_shape()[1]) == 2:
labels = tf.cast(labels, tf.float32)
losses = tf.nn.sigmoid_cross_entropy_with_logits(
labels=labels, logits=logits[:, 0])
else:
raise ValueError("Unable to compute softmax cross entropy for more than"
" 2 classes.")
return tf.reduce_mean(losses) + tf.reduce_mean(l2reg) * FLAGS.l2_reg_scale
def argmax(self, logits):
"""Samples the most likely class label given the logits.
Args:
logits: Un-normalized logits with shape (num_samples, num_classes)
Returns:
predictions: Predicted class labels, has shape (num_samples,)
"""
return tf.cast(tf.argmax(tf.nn.softmax(logits), 1), tf.int32)
def accuracy(self, params, data, labels):
"""Computes the accuracy (fraction of correct classifications).
Args:
params: List of parameter tensors or variables
data: Batch of features with samples along the first dimension
labels: Vector of labels with the same number of samples as the data
Returns:
accuracy: Fraction of correct classifications across the batch
"""
predictions = self.argmax(self.inference(params, data))
return tf.contrib.metrics.accuracy(predictions, tf.cast(labels, tf.int32))
class SoftmaxRegression(SoftmaxClassifier):
"""Builds a softmax regression problem."""
def __init__(self, n_features, n_classes, activation=tf.identity,
random_seed=None, noise_stdev=0.0):
self.activation = activation
self.n_features = n_features
param_shapes = [(n_features, n_classes), (n_classes,)]
super(SoftmaxRegression, self).__init__(param_shapes,
random_seed,
noise_stdev)
def inference(self, params, data):
features = tf.reshape(data, (-1, self.n_features))
return tf.matmul(features, params[0]) + params[1]
class SparseSoftmaxRegression(SoftmaxClassifier):
"""Builds a sparse input softmax regression problem."""
def __init__(self,
n_features,
n_classes,
activation=tf.identity,
random_seed=None,
noise_stdev=0.0):
self.activation = activation
self.n_features = n_features
param_shapes = [(n_classes, n_features), (n_features, n_classes), (
n_classes,)]
super(SparseSoftmaxRegression, self).__init__(param_shapes, random_seed,
noise_stdev)
def inference(self, params, data):
all_embeddings, softmax_weights, softmax_bias = params
embeddings = tf.nn.embedding_lookup(all_embeddings, tf.cast(data, tf.int32))
embeddings = tf.reduce_sum(embeddings, 1)
return tf.matmul(embeddings, softmax_weights) + softmax_bias
class OneHotSparseSoftmaxRegression(SoftmaxClassifier):
"""Builds a sparse input softmax regression problem.
This is identical to SparseSoftmaxRegression, but without using embedding
ops.
"""
def __init__(self,
n_features,
n_classes,
activation=tf.identity,
random_seed=None,
noise_stdev=0.0):
self.activation = activation
self.n_features = n_features
self.n_classes = n_classes
param_shapes = [(n_classes, n_features), (n_features, n_classes), (
n_classes,)]
super(OneHotSparseSoftmaxRegression, self).__init__(param_shapes,
random_seed,
noise_stdev)
def inference(self, params, data):
all_embeddings, softmax_weights, softmax_bias = params
num_ids = tf.shape(data)[1]
one_hot_embeddings = tf.one_hot(tf.cast(data, tf.int32), self.n_classes)
one_hot_embeddings = tf.reshape(one_hot_embeddings, [-1, self.n_classes])
embeddings = tf.matmul(one_hot_embeddings, all_embeddings)
embeddings = tf.reshape(embeddings, [-1, num_ids, self.n_features])
embeddings = tf.reduce_sum(embeddings, 1)
return tf.matmul(embeddings, softmax_weights) + softmax_bias
class FullyConnected(SoftmaxClassifier):
"""Builds a multi-layer perceptron classifier."""
def __init__(self, n_features, n_classes, hidden_sizes=(32, 64),
activation=tf.nn.sigmoid, random_seed=None, noise_stdev=0.0):
"""Initializes an multi-layer perceptron classification problem."""
# Store the number of features and activation function.
self.n_features = n_features
self.activation = activation
# Define the network as a list of weight + bias shapes for each layer.
param_shapes = []
for ix, sz in enumerate(hidden_sizes + (n_classes,)):
# The previous layer"s size (n_features if input).
prev_size = n_features if ix == 0 else hidden_sizes[ix - 1]
# Weight shape for this layer.
param_shapes.append((prev_size, sz))
# Bias shape for this layer.
param_shapes.append((sz,))
super(FullyConnected, self).__init__(param_shapes, random_seed, noise_stdev)
def inference(self, params, data):
# Flatten the features into a vector.
features = tf.reshape(data, (-1, self.n_features))
# Pass the data through the network.
preactivations = tf.matmul(features, params[0]) + params[1]
for layer in range(2, len(self.param_shapes), 2):
net = self.activation(preactivations)
preactivations = tf.matmul(net, params[layer]) + params[layer + 1]
return preactivations
def accuracy(self, params, data, labels):
"""Computes the accuracy (fraction of correct classifications).
Args:
params: List of parameter tensors or variables
data: Batch of features with samples along the first dimension
labels: Vector of labels with the same number of samples as the data
Returns:
accuracy: Fraction of correct classifications across the batch
"""
predictions = self.argmax(self.activation(self.inference(params, data)))
return tf.contrib.metrics.accuracy(predictions, tf.cast(labels, tf.int32))
class ConvNet(SoftmaxClassifier):
"""Builds an N-layer convnet for image classification."""
def __init__(self,
image_shape,
n_classes,
filter_list,
activation=tf.nn.relu,
random_seed=None,
noise_stdev=0.0):
# Number of channels, number of pixels in x- and y- dimensions.
n_channels, px, py = image_shape
# Store the activation.
self.activation = activation
param_shapes = []
input_size = n_channels
for fltr in filter_list:
# Add conv2d filters.
param_shapes.append((fltr[0], fltr[1], input_size, fltr[2]))
input_size = fltr[2]
# Number of units in the final (dense) layer.
self.affine_size = input_size * px * py
param_shapes.append((self.affine_size, n_classes)) # affine weights
param_shapes.append((n_classes,)) # affine bias
super(ConvNet, self).__init__(param_shapes, random_seed, noise_stdev)
def init_tensors(self, seed=None):
"""Returns a list of tensors with the given shape."""
return [tf.random_normal(shape, mean=0., stddev=0.01, seed=seed)
for shape in self.param_shapes]
def inference(self, params, data):
# Unpack.
w_conv_list = params[:-2]
output_w, output_b = params[-2:]
conv_input = data
for w_conv in w_conv_list:
layer = tf.nn.conv2d(conv_input, w_conv, strides=[1] * 4, padding="SAME")
output = self.activation(layer)
conv_input = output
# Flatten.
flattened = tf.reshape(conv_input, (-1, self.affine_size))
# Fully connected layer.
return tf.matmul(flattened, output_w) + output_b
class Bowl(Problem):
"""A 2D quadratic bowl."""
def __init__(self, condition_number, angle=0.0,
random_seed=None, noise_stdev=0.0):
assert condition_number > 0, "Condition number must be positive."
# Define parameter shapes.
param_shapes = [(2, 1)]
super(Bowl, self).__init__(param_shapes, random_seed, noise_stdev)
self.condition_number = condition_number
self.angle = angle
self._build_matrix(condition_number, angle)
def _build_matrix(self, condition_number, angle):
"""Builds the Hessian matrix."""
hessian = np.array([[condition_number, 0.], [0., 1.]], dtype="float32")
# Build the rotation matrix.
rotation_matrix = np.array([
[np.cos(angle), -np.sin(angle)],
[np.sin(angle), np.cos(angle)]
])
# The objective is 0.5 * || Ax ||_2^2
# where the data matrix (A) is: sqrt(Hessian).dot(rotation_matrix).
self.matrix = np.sqrt(hessian).dot(rotation_matrix)
def objective(self, params, data=None, labels=None):
mtx = tf.constant(self.matrix, dtype=tf.float32)
return tf.nn.l2_loss(tf.matmul(mtx, params[0]))
def surface(self, xlim=5, ylim=5, n=50):
xm, ym = _mesh(xlim, ylim, n)
pts = np.vstack([xm.ravel(), ym.ravel()])
zm = 0.5 * np.linalg.norm(self.matrix.dot(pts), axis=0) ** 2
return xm, ym, zm.reshape(n, n)
class Problem2D(Problem):
def __init__(self, random_seed=None, noise_stdev=0.0):
param_shapes = [(2,)]
super(Problem2D, self).__init__(param_shapes, random_seed, noise_stdev)
def surface(self, n=50, xlim=5, ylim=5):
"""Computes the objective surface over a 2d mesh."""
# Create a mesh over the given coordinate ranges.
xm, ym = _mesh(xlim, ylim, n)
with tf.Graph().as_default(), tf.Session() as sess:
# Ops to compute the objective at every (x, y) point.
x = tf.placeholder(tf.float32, shape=xm.shape)
y = tf.placeholder(tf.float32, shape=ym.shape)
obj = self.objective([[x, y]])
# Run the computation.
zm = sess.run(obj, feed_dict={x: xm, y: ym})
return xm, ym, zm
class Rosenbrock(Problem2D):
"""See https://en.wikipedia.org/wiki/Rosenbrock_function.
This function has a single global minima at [1, 1]
The objective value at this point is zero.
"""
def init_tensors(self, seed=None):
"""Returns a list of tensors with the given shape."""
return [tf.random_uniform(shape, minval=-5., maxval=10., seed=seed)
for shape in self.param_shapes]
def objective(self, params, data=None, labels=None):
x, y = tf.split(params[0], 2, axis=0)
obj = (1 - x)**2 + 100 * (y - x**2)**2
return tf.squeeze(obj)
def make_rosenbrock_loss_and_init(device=None):
"""A variable-backed version of Rosenbrock problem.
See the Rosenbrock class for details.
Args:
device: Where to place the ops of this problem.
Returns:
A tuple of two callables, first of which creates the loss and the second
creates the parameter initializer function.
"""
def make_rosenbrock_loss():
with tf.name_scope("optimizee"):
with tf.device(device):
x = tf.get_variable("x", [1])
y = tf.get_variable("y", [1])
c = tf.get_variable(
"c", [1],
initializer=tf.constant_initializer(100.0),
trainable=False)
obj = (1 - x)**2 + c * (y - x**2)**2
return tf.squeeze(obj)
def make_init_fn(parameters):
with tf.device(device):
init_op = tf.variables_initializer(parameters)
def init_fn(sess):
tf.logging.info("Initializing model parameters.")
sess.run(init_op)
return init_fn
return make_rosenbrock_loss, make_init_fn
class Saddle(Problem2D):
"""Loss surface around a saddle point."""
def objective(self, params, data=None, labels=None):
x, y = tf.split(params[0], 2, axis=0)
obj = x ** 2 - y ** 2
return tf.squeeze(obj)
class LogSumExp(Problem2D):
"""2D function defined by the log of the sum of exponentials."""
def objective(self, params, data=None, labels=None):
x, y = tf.split(params[0], 2, axis=0)
obj = tf.log(tf.exp(x + 3. * y - 0.1) +
tf.exp(x - 3. * y - 0.1) +
tf.exp(-x - 0.1) + 1.0)
return tf.squeeze(obj)
class Ackley(Problem2D):
"""Ackley's function (contains many local minima)."""
def init_tensors(self, seed=None):
"""Returns a list of tensors with the given shape."""
return [tf.random_uniform(shape, minval=-32.768, maxval=32.768, seed=seed)
for shape in self.param_shapes]
def objective(self, params, data=None, labels=None):
x, y = tf.split(params[0], 2, axis=0)
obj = (-20 * tf.exp(-0.2 * tf.sqrt(0.5 * (x ** 2 + y ** 2))) -
tf.exp(0.5 * (tf.cos(2 * np.pi * x) + tf.cos(2 * np.pi * y))) +
tf.exp(1.0) + 20.)
return tf.squeeze(obj)
class Beale(Problem2D):
"""Beale function (a multimodal function with sharp peaks)."""
def init_tensors(self, seed=None):
"""Returns a list of tensors with the given shape."""
return [tf.random_uniform(shape, minval=-4.5, maxval=4.5, seed=seed)
for shape in self.param_shapes]
def objective(self, params, data=None, labels=None):
x, y = tf.split(params[0], 2, axis=0)
obj = ((1.5 - x + x * y) ** 2 +
(2.25 - x + x * y ** 2) ** 2 +
(2.625 - x + x * y ** 3) ** 2)
return tf.squeeze(obj)
class Booth(Problem2D):
"""Booth's function (has a long valley along one dimension)."""
def init_tensors(self, seed=None):
"""Returns a list of tensors with the given shape."""
return [tf.random_uniform(shape, minval=-10., maxval=10., seed=seed)
for shape in self.param_shapes]
def objective(self, params, data=None, labels=None):
x, y = tf.split(params[0], 2, axis=0)
obj = (x + 2 * y - 7) ** 2 + (2 * x + y - 5) ** 2
return tf.squeeze(obj)
class StyblinskiTang(Problem2D):
"""Styblinski-Tang function (a bumpy function in two dimensions)."""
def init_tensors(self, seed=None):
"""Returns a list of tensors with the given shape."""
return [tf.random_uniform(shape, minval=-5., maxval=5., seed=seed)
for shape in self.param_shapes]
def objective(self, params, data=None, labels=None):
params = tf.split(params[0], 2, axis=0)
obj = 0.5 * tf.reduce_sum([x ** 4 - 16 * x ** 2 + 5 * x
for x in params], 0) + 80.
return tf.squeeze(obj)
class Matyas(Problem2D):
"""Matyas function (a function with a single global minimum in a valley)."""
def init_tensors(self, seed=None):
"""Returns a list of tensors with the given shape."""
return [tf.random_uniform(shape, minval=-10, maxval=10, seed=seed)
for shape in self.param_shapes]
def objective(self, params, data=None, labels=None):
x, y = tf.split(params[0], 2, axis=0)
obj = 0.26 * (x ** 2 + y ** 2) - 0.48 * x * y
return tf.squeeze(obj)
class Branin(Problem2D):
"""Branin function (a function with three global minima)."""
def init_tensors(self, seed=None):
"""Returns a list of tensors with the given shape."""
x1 = tf.random_uniform((1,), minval=-5., maxval=10.,
seed=seed)
x2 = tf.random_uniform((1,), minval=0., maxval=15.,
seed=seed)
return [tf.concat([x1, x2], 0)]
def objective(self, params, data=None, labels=None):
x, y = tf.split(params[0], 2, axis=0)
# Define some constants.
a = 1.
b = 5.1 / (4. * np.pi ** 2)
c = 5 / np.pi
r = 6.
s = 10.
t = 1 / (8. * np.pi)
# Evaluate the function.
obj = a * (y - b * x ** 2 + c * x - r) ** 2 + s * (1 - t) * tf.cos(x) + s
return tf.squeeze(obj)
class Michalewicz(Problem2D):
"""Michalewicz function (has steep ridges and valleys)."""
def init_tensors(self, seed=None):
"""Returns a list of tensors with the given shape."""
return [tf.random_uniform(shape, minval=0., maxval=np.pi, seed=seed)
for shape in self.param_shapes]
def objective(self, params, data=None, labels=None):
x, y = tf.split(params[0], 2, axis=0)
m = 5 # Defines how steep the ridges are (larger m => steeper ridges).
obj = 2. - (tf.sin(x) * tf.sin(x ** 2 / np.pi) ** (2 * m) +
tf.sin(y) * tf.sin(2 * y ** 2 / np.pi) ** (2 * m))
return tf.squeeze(obj)
class Rescale(Problem):
"""Takes an existing problem, and rescales all the parameters."""
def __init__(self, problem_spec, scale=10., noise_stdev=0.0):
self.problem = problem_spec.build()
self.param_shapes = self.problem.param_shapes
self.scale = scale
super(Rescale, self).__init__(self.param_shapes, random_seed=None,
noise_stdev=noise_stdev)
def init_tensors(self, seed=None):
params_raw = self.problem.init_tensors(seed=seed)
params = [t * self.scale for t in params_raw]
return params
def objective(self, params, data=None, labels=None):
params_raw = [t/self.scale for t in params]
problem_obj = self.problem.objective(params_raw, data, labels)
return problem_obj
class SumTask(Problem):
"""Takes a list of problems and modifies the objective to be their sum."""
def __init__(self, problem_specs, noise_stdev=0.0):
self.problems = [ps.build() for ps in problem_specs]
self.param_shapes = []
for prob in self.problems:
self.param_shapes += prob.param_shapes
super(SumTask, self).__init__(self.param_shapes, random_seed=None,
noise_stdev=noise_stdev)
def init_tensors(self, seed=None):
tensors = []
for prob in self.problems:
tensors += prob.init_tensors(seed=seed)
return tensors
def objective(self, params, data=None, labels=None):
obj = 0.
index = 0
for prob in self.problems:
num_params = len(prob.param_shapes)
obj += prob.objective(params[index:index + num_params])
index += num_params
return obj
class IsotropicQuadratic(Problem):
"""An isotropic quadratic problem."""
def objective(self, params, data=None, labels=None):
return sum([tf.reduce_sum(param ** 2) for param in params])
class Norm(Problem):
"""Takes an existing problem and modifies the objective to be its N-norm."""
def __init__(self, ndim, random_seed=None, noise_stdev=0.0, norm_power=2.):
param_shapes = [(ndim, 1)]
super(Norm, self).__init__(param_shapes, random_seed, noise_stdev)
# Generate a random problem instance.
self.w = np.random.randn(ndim, ndim).astype("float32")
self.y = np.random.randn(ndim, 1).astype("float32")
self.norm_power = norm_power
def objective(self, params, data=None, labels=None):
diff = tf.matmul(self.w, params[0]) - self.y
exp = 1. / self.norm_power
loss = tf.reduce_sum((tf.abs(diff) + EPSILON) ** self.norm_power) ** exp
return loss
class LogObjective(Problem):
"""Takes an existing problem and modifies the objective to be its log."""
def __init__(self, problem_spec):
self.problem = problem_spec.build()
self.param_shapes = self.problem.param_shapes
super(LogObjective, self).__init__(self.param_shapes,
random_seed=None,
noise_stdev=0.0)
def objective(self, params, data=None, labels=None):
problem_obj = self.problem.objective(params, data, labels)
return tf.log(problem_obj + EPSILON) - tf.log(EPSILON)
class SparseProblem(Problem):
"""Takes a problem and sets gradients to 0 with the given probability."""
def __init__(self,
problem_spec,
zero_probability=0.99,
random_seed=None,
noise_stdev=0.0):
self.problem = problem_spec.build()
self.param_shapes = self.problem.param_shapes
self.zero_prob = zero_probability
super(SparseProblem, self).__init__(self.param_shapes,
random_seed=random_seed,
noise_stdev=noise_stdev)
def objective(self, parameters, data=None, labels=None):
return self.problem.objective(parameters, data, labels)
def gradients(self, objective, parameters):
grads = tf.gradients(objective, list(parameters))
new_grads = []
for grad in grads:
mask = tf.greater(self.zero_prob, tf.random_uniform(grad.get_shape()))
zero_grad = tf.zeros_like(grad, dtype=tf.float32)
noisy_grad = grad + self.noise_stdev * tf.random_normal(grad.get_shape())
new_grads.append(tf.where(mask, zero_grad, noisy_grad))
return new_grads
class DependencyChain(Problem):
"""A problem in which parameters must be optimized in order.
A sequence of parameters which all need to be brought to 0, but where each
parameter in the sequence can't be brought to 0 until the preceding one
has been. This should take a long time to optimize, with steady
(or accelerating) progress throughout the entire process.
"""
def __init__(self, ndim, random_seed=None, noise_stdev=0.):
param_shapes = [(ndim + 1,)]
self.ndim = ndim
super(DependencyChain, self).__init__(
param_shapes, random_seed, noise_stdev)
def objective(self, params, data=None, labels=None):
terms = params[0][0]**2 + params[0][1:]**2 / (params[0][:-1]**2 + EPSILON)
return tf.reduce_sum(terms)
class MinMaxWell(Problem):
"""Problem with global min when both the min and max (absolute) params are 1.
The gradient for all but two parameters (the min and max) is zero. This
should therefore encourage the optimizer to behave sensible even when
parameters have zero gradients, as is common eg for some deep neural nets.
"""
def __init__(self, ndim, random_seed=None, noise_stdev=0.):
param_shapes = [(ndim,)]
self.ndim = ndim
super(MinMaxWell, self).__init__(param_shapes, random_seed, noise_stdev)
def objective(self, params, data=None, labels=None):
params_sqr = params[0]**2
min_sqr = tf.reduce_min(params_sqr)
max_sqr = tf.reduce_max(params_sqr)
epsilon = 1e-12
return max_sqr + 1./min_sqr - 2. + epsilon
class OutwardSnake(Problem):
"""A winding path out to infinity.
Ideal step length stays constant along the entire path.
"""
def __init__(self, ndim, random_seed=None, noise_stdev=0.):
param_shapes = [(ndim,)]
self.ndim = ndim
super(OutwardSnake, self).__init__(param_shapes, random_seed, noise_stdev)
def objective(self, params, data, labels=None):
radius = tf.sqrt(tf.reduce_sum(params[0]**2))
rad_loss = tf.reduce_sum(1. / (radius + 1e-6) * data[:, 0])
sin_dist = params[0][1:] - tf.cos(params[0][:-1]) * np.pi
sin_loss = tf.reduce_sum((sin_dist * data[:, 1:])**2)
return rad_loss + sin_loss
class ProjectionQuadratic(Problem):
"""Dataset consists of different directions to probe. Global min is at 0."""
def __init__(self, ndim, random_seed=None, noise_stdev=0.):
param_shapes = [(1, ndim)]
super(ProjectionQuadratic, self).__init__(
param_shapes, random_seed, noise_stdev)
def objective(self, params, data, labels=None):
return tf.reduce_sum((params[0] * data)**2)
class SumOfQuadratics(Problem):
def __init__(self, ndim, random_seed=None, noise_stdev=0.):
param_shapes = [(1, ndim)]
super(SumOfQuadratics, self).__init__(
param_shapes, random_seed, noise_stdev)
def objective(self, params, data, labels=None):
epsilon = 1e-12
# Assume dataset is designed so that the global minimum is at params=0.
# Subtract loss at params=0, so that global minimum has objective value
# epsilon (added to avoid floating point issues).
return (tf.reduce_sum((params[0] - data)**2) - tf.reduce_sum(data**2) +
epsilon)
class MatMulAlgorithm(Problem):
"""A 6-th order polynomial optimization problem.
This problem is parametrized by n and k. A solution to this problem with
objective value exactly zero defines a matrix multiplication algorithm of
n x n matrices using k multiplications between matrices. When applied
recursively, such an algorithm has complexity O(n^(log_n(k))).
Given n, it is not known in general which values of k in [n^2, n^3] have a
solution. There is always a solution with k = n^3 (this is the naive
algorithm).
In the special case n = 2, it is known that there are solutions for k = {7, 8}
but not for k <= 6. For n = 3, it is known that there are exact solutions for
23 <= k <= 27, and there are asymptotic solutions for k = {21, 22}, but the
other cases are unknown.
For a given n and k, if one solution exists then infinitely many solutions
exist due to permutation and scaling symmetries in the parameters.
This is a very hard problem for some values of n and k (e.g. n = 3, k = 21),
but very easy for other values (e.g. n = 2, k = 7).
For a given n and k, the specific formulation of this problem is as follows.
Let theta_a, theta_b, theta_c be parameter matrices with respective dimensions
[n**2, k], [n**2, k], [k, n**2]. Then for any matrices a, b with shape [n, n],
we can form the matrix c with shape [n, n] via the operation:
((vec(a) * theta_a) .* (vec(b) * theta_b)) * theta_c = vec(c), (#)
where vec(x) is the operator that flattens a matrix with shape [n, n] into a
row vector with shape [1, n**2], * denotes matrix multiplication and .*
denotes elementwise multiplication.
This operation, parameterized by theta_a, theta_b, theta_c, is a matrix
multiplication algorithm iff c = a*b for all [n, n] matrices a and b. But
actually it suffices to verify all combinations of one-hot matrices a and b,
of which there are n**4 such combinations. This gives a batch of n**4 matrix
triplets (a, b, c) such that equation (#) must hold for each triplet. We solve
for theta_a, theta_b, theta_c by minimizing the sum of squares of errors
across this batch.
Finally, theta_c can be computed from theta_a and theta_b. Therefore it
suffices to learn theta_a and theta_b, from which theta_c and therefore the
objective value can be computed.
"""
def __init__(self, n, k):
assert isinstance(n, int), "n must be an integer"
assert isinstance(k, int), "k must be an integer"
assert n >= 2, "Must have n >= 2"
assert k >= n**2 and k <= n**3, "Must have n**2 <= k <= n**3"
param_shapes = [(n**2, k), (n**2, k)] # theta_a, theta_b
super(MatMulAlgorithm, self).__init__(
param_shapes, random_seed=None, noise_stdev=0.0)
self.n = n
self.k = k
# Build a batch of all combinations of one-hot matrices a, b, and their
# respective products c. Correctness on this batch is a necessary and
# sufficient condition for the algorithm to be valid. The number of matrices
# in {a, b, c}_3d is n**4 and each matrix is n x n.
onehots = np.identity(n**2).reshape(n**2, n, n)
a_3d = np.repeat(onehots, n**2, axis=0)
b_3d = np.tile(onehots, [n**2, 1, 1])
c_3d = np.matmul(a_3d, b_3d)
# Convert the batch to 2D Tensors.
self.a = tf.constant(a_3d.reshape(n**4, n**2), tf.float32, name="a")
self.b = tf.constant(b_3d.reshape(n**4, n**2), tf.float32, name="b")
self.c = tf.constant(c_3d.reshape(n**4, n**2), tf.float32, name="c")
def init_tensors(self, seed=None):
# Initialize params such that the columns of theta_a and theta_b have L2
# norm 1.
def _param_initializer(shape, seed=None):
x = tf.random_normal(shape, dtype=tf.float32, seed=seed)
return tf.transpose(tf.nn.l2_normalize(tf.transpose(x), 1))
return [_param_initializer(shape, seed) for shape in self.param_shapes]
def objective(self, parameters, data=None, labels=None):
theta_a = parameters[0]
theta_b = parameters[1]
# Compute theta_c from theta_a and theta_b.
p = tf.matmul(self.a, theta_a) * tf.matmul(self.b, theta_b)
p_trans = tf.transpose(p, name="p_trans")
p_inv = tf.matmul(
tf.matrix_inverse(tf.matmul(p_trans, p)), p_trans, name="p_inv")
theta_c = tf.matmul(p_inv, self.c, name="theta_c")
# Compute the "predicted" value of c.
c_hat = tf.matmul(p, theta_c, name="c_hat")
# Compute the loss (sum of squared errors).
loss = tf.reduce_sum((c_hat - self.c)**2, name="loss")
return loss
def matmul_problem_sequence(n, k_min, k_max):
"""Helper to generate a sequence of matrix multiplication problems."""
return [(_Spec(MatMulAlgorithm, (n, k), {}), None, None)
for k in range(k_min, k_max + 1)]
def init_fixed_variables(arrays):
with tf.variable_scope(PARAMETER_SCOPE):
params = [tf.Variable(arr.astype("float32")) for arr in arrays]
return params
def _mesh(xlim, ylim, n):
"""Creates a 2D meshgrid covering the given ranges.
Args:
xlim: int that defines the desired x-range (-xlim, xlim)
ylim: int that defines the desired y-range (-ylim, ylim)
n: number of points in each dimension of the mesh
Returns:
xm: 2D array of x-values in the mesh
ym: 2D array of y-values in the mesh
"""
return np.meshgrid(np.linspace(-xlim, xlim, n),
np.linspace(-ylim, ylim, n))
|