NCTCMumbai's picture
Upload 2583 files
18ddfe2 verified
raw
history blame
10.3 kB
# Lint as: python2, python3
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for calibration_builder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from scipy import interpolate
from six.moves import zip
import tensorflow.compat.v1 as tf
from object_detection.builders import calibration_builder
from object_detection.protos import calibration_pb2
from object_detection.utils import test_case
class CalibrationBuilderTest(test_case.TestCase):
def test_tf_linear_interp1d_map(self):
"""Tests TF linear interpolation mapping to a single number."""
def graph_fn():
tf_x = tf.constant([0., 0.5, 1.])
tf_y = tf.constant([0.5, 0.5, 0.5])
new_x = tf.constant([0., 0.25, 0.5, 0.75, 1.])
tf_map_outputs = calibration_builder._tf_linear_interp1d(
new_x, tf_x, tf_y)
return tf_map_outputs
tf_map_outputs_np = self.execute(graph_fn, [])
self.assertAllClose(tf_map_outputs_np, [0.5, 0.5, 0.5, 0.5, 0.5])
def test_tf_linear_interp1d_interpolate(self):
"""Tests TF 1d linear interpolation not mapping to a single number."""
def graph_fn():
tf_x = tf.constant([0., 0.5, 1.])
tf_y = tf.constant([0.6, 0.7, 1.0])
new_x = tf.constant([0., 0.25, 0.5, 0.75, 1.])
tf_interpolate_outputs = calibration_builder._tf_linear_interp1d(
new_x, tf_x, tf_y)
return tf_interpolate_outputs
tf_interpolate_outputs_np = self.execute(graph_fn, [])
self.assertAllClose(tf_interpolate_outputs_np, [0.6, 0.65, 0.7, 0.85, 1.])
@staticmethod
def _get_scipy_interp1d(new_x, x, y):
"""Helper performing 1d linear interpolation using SciPy."""
interpolation1d_fn = interpolate.interp1d(x, y)
return interpolation1d_fn(new_x)
def _get_tf_interp1d(self, new_x, x, y):
"""Helper performing 1d linear interpolation using Tensorflow."""
def graph_fn():
tf_interp_outputs = calibration_builder._tf_linear_interp1d(
tf.convert_to_tensor(new_x, dtype=tf.float32),
tf.convert_to_tensor(x, dtype=tf.float32),
tf.convert_to_tensor(y, dtype=tf.float32))
return tf_interp_outputs
np_tf_interp_outputs = self.execute(graph_fn, [])
return np_tf_interp_outputs
def test_tf_linear_interp1d_against_scipy_map(self):
"""Tests parity of TF linear interpolation with SciPy for simple mapping."""
length = 10
np_x = np.linspace(0, 1, length)
# Mapping all numbers to 0.5
np_y_map = np.repeat(0.5, length)
# Scipy and TF interpolations
test_data_np = np.linspace(0, 1, length * 10)
scipy_map_outputs = self._get_scipy_interp1d(test_data_np, np_x, np_y_map)
np_tf_map_outputs = self._get_tf_interp1d(test_data_np, np_x, np_y_map)
self.assertAllClose(scipy_map_outputs, np_tf_map_outputs)
def test_tf_linear_interp1d_against_scipy_interpolate(self):
"""Tests parity of TF linear interpolation with SciPy."""
length = 10
np_x = np.linspace(0, 1, length)
# Requires interpolation over 0.5 to 1 domain
np_y_interp = np.linspace(0.5, 1, length)
# Scipy interpolation for comparison
test_data_np = np.linspace(0, 1, length * 10)
scipy_interp_outputs = self._get_scipy_interp1d(test_data_np, np_x,
np_y_interp)
np_tf_interp_outputs = self._get_tf_interp1d(test_data_np, np_x,
np_y_interp)
self.assertAllClose(scipy_interp_outputs, np_tf_interp_outputs)
@staticmethod
def _add_function_approximation_to_calibration_proto(calibration_proto,
x_array, y_array,
class_id):
"""Adds a function approximation to calibration proto for a class id."""
# Per-class calibration.
if class_id is not None:
function_approximation = (
calibration_proto.class_id_function_approximations
.class_id_xy_pairs_map[class_id])
# Class-agnostic calibration.
else:
function_approximation = (
calibration_proto.function_approximation.x_y_pairs)
for x, y in zip(x_array, y_array):
x_y_pair_message = function_approximation.x_y_pair.add()
x_y_pair_message.x = x
x_y_pair_message.y = y
def test_class_agnostic_function_approximation(self):
"""Tests that calibration produces correct class-agnostic values."""
# Generate fake calibration proto. For this interpolation, any input on
# [0.0, 0.5] should be divided by 2 and any input on (0.5, 1.0] should have
# 0.25 subtracted from it.
class_agnostic_x = np.asarray([0.0, 0.5, 1.0])
class_agnostic_y = np.asarray([0.0, 0.25, 0.75])
calibration_config = calibration_pb2.CalibrationConfig()
self._add_function_approximation_to_calibration_proto(
calibration_config, class_agnostic_x, class_agnostic_y, class_id=None)
def graph_fn():
calibration_fn = calibration_builder.build(calibration_config)
# batch_size = 2, num_classes = 2, num_anchors = 2.
class_predictions_with_background = tf.constant(
[[[0.1, 0.2, 0.3],
[0.4, 0.5, 0.0]],
[[0.6, 0.7, 0.8],
[0.9, 1.0, 1.0]]], dtype=tf.float32)
# Everything should map to 0.5 if classes are ignored.
calibrated_scores = calibration_fn(class_predictions_with_background)
return calibrated_scores
calibrated_scores_np = self.execute(graph_fn, [])
self.assertAllClose(calibrated_scores_np, [[[0.05, 0.1, 0.15],
[0.2, 0.25, 0.0]],
[[0.35, 0.45, 0.55],
[0.65, 0.75, 0.75]]])
def test_multiclass_function_approximations(self):
"""Tests that calibration produces correct multiclass values."""
# Background class (0-index) maps all predictions to 0.5.
class_0_x = np.asarray([0.0, 0.5, 1.0])
class_0_y = np.asarray([0.5, 0.5, 0.5])
calibration_config = calibration_pb2.CalibrationConfig()
self._add_function_approximation_to_calibration_proto(
calibration_config, class_0_x, class_0_y, class_id=0)
# Class id 1 will interpolate using these values.
class_1_x = np.asarray([0.0, 0.2, 1.0])
class_1_y = np.asarray([0.0, 0.6, 1.0])
self._add_function_approximation_to_calibration_proto(
calibration_config, class_1_x, class_1_y, class_id=1)
def graph_fn():
calibration_fn = calibration_builder.build(calibration_config)
# batch_size = 2, num_classes = 2, num_anchors = 2.
class_predictions_with_background = tf.constant(
[[[0.1, 0.2], [0.9, 0.1]],
[[0.6, 0.4], [0.08, 0.92]]],
dtype=tf.float32)
calibrated_scores = calibration_fn(class_predictions_with_background)
return calibrated_scores
calibrated_scores_np = self.execute(graph_fn, [])
self.assertAllClose(calibrated_scores_np, [[[0.5, 0.6], [0.5, 0.3]],
[[0.5, 0.7], [0.5, 0.96]]])
def test_temperature_scaling(self):
"""Tests that calibration produces correct temperature scaling values."""
calibration_config = calibration_pb2.CalibrationConfig()
calibration_config.temperature_scaling_calibration.scaler = 2.0
def graph_fn():
calibration_fn = calibration_builder.build(calibration_config)
# batch_size = 2, num_classes = 2, num_anchors = 2.
class_predictions_with_background = tf.constant(
[[[0.1, 0.2, 0.3], [0.4, 0.5, 0.0]],
[[0.6, 0.7, 0.8], [0.9, 1.0, 1.0]]],
dtype=tf.float32)
calibrated_scores = calibration_fn(class_predictions_with_background)
return calibrated_scores
calibrated_scores_np = self.execute(graph_fn, [])
self.assertAllClose(calibrated_scores_np,
[[[0.05, 0.1, 0.15], [0.2, 0.25, 0.0]],
[[0.3, 0.35, 0.4], [0.45, 0.5, 0.5]]])
def test_temperature_scaling_incorrect_value_error(self):
calibration_config = calibration_pb2.CalibrationConfig()
calibration_config.temperature_scaling_calibration.scaler = 0
calibration_fn = calibration_builder.build(calibration_config)
class_predictions_with_background = tf.constant(
[[[0.1, 0.2, 0.3]]], dtype=tf.float32)
with self.assertRaises(ValueError):
calibration_fn(class_predictions_with_background)
def test_skips_class_when_calibration_parameters_not_present(self):
"""Tests that graph fails when parameters not present for all classes."""
# Only adding calibration parameters for class id = 0, even though class id
# 1 is present in the data.
class_0_x = np.asarray([0.0, 0.5, 1.0])
class_0_y = np.asarray([0.5, 0.5, 0.5])
calibration_config = calibration_pb2.CalibrationConfig()
self._add_function_approximation_to_calibration_proto(
calibration_config, class_0_x, class_0_y, class_id=0)
def graph_fn():
calibration_fn = calibration_builder.build(calibration_config)
# batch_size = 2, num_classes = 2, num_anchors = 2.
class_predictions_with_background = tf.constant(
[[[0.1, 0.2], [0.9, 0.1]],
[[0.6, 0.4], [0.08, 0.92]]],
dtype=tf.float32)
calibrated_scores = calibration_fn(class_predictions_with_background)
return calibrated_scores
calibrated_scores_np = self.execute(graph_fn, [])
self.assertAllClose(calibrated_scores_np, [[[0.5, 0.2], [0.5, 0.1]],
[[0.5, 0.4], [0.5, 0.92]]])
if __name__ == '__main__':
tf.test.main()