NCTCMumbai's picture
Upload 2583 files
18ddfe2 verified
raw
history blame
23.5 kB
# Lint as: python2, python3
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for dataset_builder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
from six.moves import range
import tensorflow.compat.v1 as tf
from google.protobuf import text_format
from object_detection.builders import dataset_builder
from object_detection.core import standard_fields as fields
from object_detection.dataset_tools import seq_example_util
from object_detection.protos import input_reader_pb2
from object_detection.utils import dataset_util
from object_detection.utils import test_case
# pylint: disable=g-import-not-at-top
try:
from tensorflow.contrib import lookup as contrib_lookup
except ImportError:
# TF 2.0 doesn't ship with contrib.
pass
# pylint: enable=g-import-not-at-top
def get_iterator_next_for_testing(dataset, is_tf2):
iterator = dataset.make_initializable_iterator()
if not is_tf2:
tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer)
return iterator.get_next()
def _get_labelmap_path():
"""Returns an absolute path to label map file."""
parent_path = os.path.dirname(tf.resource_loader.get_data_files_path())
return os.path.join(parent_path, 'data',
'pet_label_map.pbtxt')
class DatasetBuilderTest(test_case.TestCase):
def create_tf_record(self, has_additional_channels=False, num_shards=1,
num_examples_per_shard=1):
def dummy_jpeg_fn():
image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
additional_channels_tensor = np.random.randint(
255, size=(4, 5, 1)).astype(np.uint8)
encoded_jpeg = tf.image.encode_jpeg(image_tensor)
encoded_additional_channels_jpeg = tf.image.encode_jpeg(
additional_channels_tensor)
return encoded_jpeg, encoded_additional_channels_jpeg
encoded_jpeg, encoded_additional_channels_jpeg = self.execute(
dummy_jpeg_fn, [])
tmp_dir = self.get_temp_dir()
flat_mask = (4 * 5) * [1.0]
for i in range(num_shards):
path = os.path.join(tmp_dir, '%05d.tfrecord' % i)
writer = tf.python_io.TFRecordWriter(path)
for j in range(num_examples_per_shard):
if num_shards > 1:
source_id = (str(i) + '_' + str(j)).encode()
else:
source_id = str(j).encode()
features = {
'image/source_id': dataset_util.bytes_feature(source_id),
'image/encoded': dataset_util.bytes_feature(encoded_jpeg),
'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')),
'image/height': dataset_util.int64_feature(4),
'image/width': dataset_util.int64_feature(5),
'image/object/bbox/xmin': dataset_util.float_list_feature([0.0]),
'image/object/bbox/xmax': dataset_util.float_list_feature([1.0]),
'image/object/bbox/ymin': dataset_util.float_list_feature([0.0]),
'image/object/bbox/ymax': dataset_util.float_list_feature([1.0]),
'image/object/class/label': dataset_util.int64_list_feature([2]),
'image/object/mask': dataset_util.float_list_feature(flat_mask),
}
if has_additional_channels:
additional_channels_key = 'image/additional_channels/encoded'
features[additional_channels_key] = dataset_util.bytes_list_feature(
[encoded_additional_channels_jpeg] * 2)
example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(example.SerializeToString())
writer.close()
return os.path.join(self.get_temp_dir(), '?????.tfrecord')
def _make_random_serialized_jpeg_images(self, num_frames, image_height,
image_width):
def graph_fn():
images = tf.cast(tf.random.uniform(
[num_frames, image_height, image_width, 3],
maxval=256,
dtype=tf.int32), dtype=tf.uint8)
images_list = tf.unstack(images, axis=0)
encoded_images_list = [tf.io.encode_jpeg(image) for image in images_list]
return encoded_images_list
encoded_images = self.execute(graph_fn, [])
return encoded_images
def create_tf_record_sequence_example(self):
path = os.path.join(self.get_temp_dir(), 'seq_tfrecord')
writer = tf.python_io.TFRecordWriter(path)
num_frames = 4
image_height = 4
image_width = 5
image_source_ids = [str(i) for i in range(num_frames)]
with self.test_session():
encoded_images = self._make_random_serialized_jpeg_images(
num_frames, image_height, image_width)
sequence_example_serialized = seq_example_util.make_sequence_example(
dataset_name='video_dataset',
video_id='video',
encoded_images=encoded_images,
image_height=image_height,
image_width=image_width,
image_source_ids=image_source_ids,
image_format='JPEG',
is_annotated=[[1], [1], [1], [1]],
bboxes=[
[[]], # Frame 0.
[[0., 0., 1., 1.]], # Frame 1.
[[0., 0., 1., 1.],
[0.1, 0.1, 0.2, 0.2]], # Frame 2.
[[]], # Frame 3.
],
label_strings=[
[], # Frame 0.
['Abyssinian'], # Frame 1.
['Abyssinian', 'american_bulldog'], # Frame 2.
[], # Frame 3
]).SerializeToString()
writer.write(sequence_example_serialized)
writer.close()
return path
def test_build_tf_record_input_reader(self):
tf_record_path = self.create_tf_record()
input_reader_text_proto = """
shuffle: false
num_readers: 1
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
def graph_fn():
return get_iterator_next_for_testing(
dataset_builder.build(input_reader_proto, batch_size=1),
self.is_tf2())
output_dict = self.execute(graph_fn, [])
self.assertNotIn(
fields.InputDataFields.groundtruth_instance_masks, output_dict)
self.assertEqual((1, 4, 5, 3),
output_dict[fields.InputDataFields.image].shape)
self.assertAllEqual([[2]],
output_dict[fields.InputDataFields.groundtruth_classes])
self.assertEqual(
(1, 1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape)
self.assertAllEqual(
[0.0, 0.0, 1.0, 1.0],
output_dict[fields.InputDataFields.groundtruth_boxes][0][0])
def get_mock_reduce_to_frame_fn(self):
def mock_reduce_to_frame_fn(dataset, dataset_map_fn, batch_size, config):
def get_frame(tensor_dict):
out_tensor_dict = {}
out_tensor_dict[fields.InputDataFields.source_id] = (
tensor_dict[fields.InputDataFields.source_id][0])
return out_tensor_dict
return dataset_map_fn(dataset, get_frame, batch_size, config)
return mock_reduce_to_frame_fn
def test_build_tf_record_input_reader_sequence_example_train(self):
tf_record_path = self.create_tf_record_sequence_example()
label_map_path = _get_labelmap_path()
input_type = 'TF_SEQUENCE_EXAMPLE'
input_reader_text_proto = """
shuffle: false
num_readers: 1
input_type: {1}
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path, input_type)
input_reader_proto = input_reader_pb2.InputReader()
input_reader_proto.label_map_path = label_map_path
text_format.Merge(input_reader_text_proto, input_reader_proto)
reduce_to_frame_fn = self.get_mock_reduce_to_frame_fn()
def graph_fn():
return get_iterator_next_for_testing(
dataset_builder.build(input_reader_proto, batch_size=1,
reduce_to_frame_fn=reduce_to_frame_fn),
self.is_tf2())
output_dict = self.execute(graph_fn, [])
self.assertEqual((1,),
output_dict[fields.InputDataFields.source_id].shape)
def test_build_tf_record_input_reader_sequence_example_test(self):
tf_record_path = self.create_tf_record_sequence_example()
input_type = 'TF_SEQUENCE_EXAMPLE'
label_map_path = _get_labelmap_path()
input_reader_text_proto = """
shuffle: false
num_readers: 1
input_type: {1}
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path, input_type)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
input_reader_proto.label_map_path = label_map_path
reduce_to_frame_fn = self.get_mock_reduce_to_frame_fn()
def graph_fn():
return get_iterator_next_for_testing(
dataset_builder.build(input_reader_proto, batch_size=1,
reduce_to_frame_fn=reduce_to_frame_fn),
self.is_tf2())
output_dict = self.execute(graph_fn, [])
self.assertEqual((1,),
output_dict[fields.InputDataFields.source_id].shape)
def test_build_tf_record_input_reader_and_load_instance_masks(self):
tf_record_path = self.create_tf_record()
input_reader_text_proto = """
shuffle: false
num_readers: 1
load_instance_masks: true
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
def graph_fn():
return get_iterator_next_for_testing(
dataset_builder.build(input_reader_proto, batch_size=1),
self.is_tf2()
)
output_dict = self.execute(graph_fn, [])
self.assertAllEqual(
(1, 1, 4, 5),
output_dict[fields.InputDataFields.groundtruth_instance_masks].shape)
def test_build_tf_record_input_reader_with_batch_size_two(self):
tf_record_path = self.create_tf_record()
input_reader_text_proto = """
shuffle: false
num_readers: 1
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
def one_hot_class_encoding_fn(tensor_dict):
tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot(
tensor_dict[fields.InputDataFields.groundtruth_classes] - 1, depth=3)
return tensor_dict
def graph_fn():
return dataset_builder.make_initializable_iterator(
dataset_builder.build(
input_reader_proto,
transform_input_data_fn=one_hot_class_encoding_fn,
batch_size=2)).get_next()
output_dict = self.execute(graph_fn, [])
self.assertAllEqual([2, 4, 5, 3],
output_dict[fields.InputDataFields.image].shape)
self.assertAllEqual(
[2, 1, 3],
output_dict[fields.InputDataFields.groundtruth_classes].shape)
self.assertAllEqual(
[2, 1, 4], output_dict[fields.InputDataFields.groundtruth_boxes].shape)
self.assertAllEqual([[[0.0, 0.0, 1.0, 1.0]], [[0.0, 0.0, 1.0, 1.0]]],
output_dict[fields.InputDataFields.groundtruth_boxes])
def test_build_tf_record_input_reader_with_batch_size_two_and_masks(self):
tf_record_path = self.create_tf_record()
input_reader_text_proto = """
shuffle: false
num_readers: 1
load_instance_masks: true
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
def one_hot_class_encoding_fn(tensor_dict):
tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot(
tensor_dict[fields.InputDataFields.groundtruth_classes] - 1, depth=3)
return tensor_dict
def graph_fn():
return dataset_builder.make_initializable_iterator(
dataset_builder.build(
input_reader_proto,
transform_input_data_fn=one_hot_class_encoding_fn,
batch_size=2)).get_next()
output_dict = self.execute(graph_fn, [])
self.assertAllEqual(
[2, 1, 4, 5],
output_dict[fields.InputDataFields.groundtruth_instance_masks].shape)
def test_raises_error_with_no_input_paths(self):
input_reader_text_proto = """
shuffle: false
num_readers: 1
load_instance_masks: true
"""
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
with self.assertRaises(ValueError):
dataset_builder.build(input_reader_proto, batch_size=1)
def test_sample_all_data(self):
tf_record_path = self.create_tf_record(num_examples_per_shard=2)
input_reader_text_proto = """
shuffle: false
num_readers: 1
sample_1_of_n_examples: 1
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
def graph_fn():
dataset = dataset_builder.build(input_reader_proto, batch_size=1)
sample1_ds = dataset.take(1)
sample2_ds = dataset.skip(1)
iter1 = dataset_builder.make_initializable_iterator(sample1_ds)
iter2 = dataset_builder.make_initializable_iterator(sample2_ds)
return iter1.get_next(), iter2.get_next()
output_dict1, output_dict2 = self.execute(graph_fn, [])
self.assertAllEqual(['0'], output_dict1[fields.InputDataFields.source_id])
self.assertEqual([b'1'], output_dict2[fields.InputDataFields.source_id])
def test_sample_one_of_n_shards(self):
tf_record_path = self.create_tf_record(num_examples_per_shard=4)
input_reader_text_proto = """
shuffle: false
num_readers: 1
sample_1_of_n_examples: 2
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
def graph_fn():
dataset = dataset_builder.build(input_reader_proto, batch_size=1)
sample1_ds = dataset.take(1)
sample2_ds = dataset.skip(1)
iter1 = dataset_builder.make_initializable_iterator(sample1_ds)
iter2 = dataset_builder.make_initializable_iterator(sample2_ds)
return iter1.get_next(), iter2.get_next()
output_dict1, output_dict2 = self.execute(graph_fn, [])
self.assertAllEqual([b'0'], output_dict1[fields.InputDataFields.source_id])
self.assertEqual([b'2'], output_dict2[fields.InputDataFields.source_id])
def test_no_input_context(self):
"""Test that all samples are read with no input context given."""
tf_record_path = self.create_tf_record(num_examples_per_shard=16,
num_shards=2)
input_reader_text_proto = """
shuffle: false
num_readers: 1
num_epochs: 1
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
for i in range(4):
# pylint:disable=cell-var-from-loop
def graph_fn():
dataset = dataset_builder.build(input_reader_proto, batch_size=8)
dataset = dataset.skip(i)
return get_iterator_next_for_testing(dataset, self.is_tf2())
batch = self.execute(graph_fn, [])
self.assertEqual(batch['image'].shape, (8, 4, 5, 3))
def graph_fn_last_batch():
dataset = dataset_builder.build(input_reader_proto, batch_size=8)
dataset = dataset.skip(4)
return get_iterator_next_for_testing(dataset, self.is_tf2())
self.assertRaises(tf.errors.OutOfRangeError, self.execute,
compute_fn=graph_fn_last_batch, inputs=[])
def test_with_input_context(self):
"""Test that a subset is read with input context given."""
tf_record_path = self.create_tf_record(num_examples_per_shard=16,
num_shards=2)
input_reader_text_proto = """
shuffle: false
num_readers: 1
num_epochs: 1
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
input_context = tf.distribute.InputContext(
num_input_pipelines=2, input_pipeline_id=0, num_replicas_in_sync=4
)
for i in range(8):
# pylint:disable=cell-var-from-loop
def graph_fn():
dataset = dataset_builder.build(input_reader_proto, batch_size=8,
input_context=input_context)
dataset = dataset.skip(i)
return get_iterator_next_for_testing(dataset, self.is_tf2())
batch = self.execute(graph_fn, [])
self.assertEqual(batch['image'].shape, (2, 4, 5, 3))
def graph_fn_last_batch():
dataset = dataset_builder.build(input_reader_proto, batch_size=8,
input_context=input_context)
dataset = dataset.skip(8)
return get_iterator_next_for_testing(dataset, self.is_tf2())
self.assertRaises(tf.errors.OutOfRangeError, self.execute,
compute_fn=graph_fn_last_batch, inputs=[])
class ReadDatasetTest(test_case.TestCase):
def setUp(self):
self._path_template = os.path.join(self.get_temp_dir(), 'examples_%s.txt')
for i in range(5):
path = self._path_template % i
with tf.gfile.Open(path, 'wb') as f:
f.write('\n'.join([str(i + 1), str((i + 1) * 10)]))
self._shuffle_path_template = os.path.join(self.get_temp_dir(),
'shuffle_%s.txt')
for i in range(2):
path = self._shuffle_path_template % i
with tf.gfile.Open(path, 'wb') as f:
f.write('\n'.join([str(i)] * 5))
super(ReadDatasetTest, self).setUp()
def _get_dataset_next(self, files, config, batch_size, num_batches_skip=0):
def decode_func(value):
return [tf.string_to_number(value, out_type=tf.int32)]
dataset = dataset_builder.read_dataset(tf.data.TextLineDataset, files,
config)
dataset = dataset.map(decode_func)
dataset = dataset.batch(batch_size)
if num_batches_skip > 0:
dataset = dataset.skip(num_batches_skip)
return get_iterator_next_for_testing(dataset, self.is_tf2())
def test_make_initializable_iterator_with_hashTable(self):
def graph_fn():
keys = [1, 0, -1]
dataset = tf.data.Dataset.from_tensor_slices([[1, 2, -1, 5]])
try:
# Dynamically try to load the tf v2 lookup, falling back to contrib
lookup = tf.compat.v2.lookup
hash_table_class = tf.compat.v2.lookup.StaticHashTable
except AttributeError:
lookup = contrib_lookup
hash_table_class = contrib_lookup.HashTable
table = hash_table_class(
initializer=lookup.KeyValueTensorInitializer(
keys=keys, values=list(reversed(keys))),
default_value=100)
dataset = dataset.map(table.lookup)
return dataset_builder.make_initializable_iterator(dataset).get_next()
result = self.execute(graph_fn, [])
self.assertAllEqual(result, [-1, 100, 1, 100])
def test_read_dataset(self):
config = input_reader_pb2.InputReader()
config.num_readers = 1
config.shuffle = False
def graph_fn():
return self._get_dataset_next(
[self._path_template % '*'], config, batch_size=20)
data = self.execute(graph_fn, [])
# Note that the execute function extracts single outputs if the return
# value is of size 1.
self.assertCountEqual(
data, [
1, 10, 2, 20, 3, 30, 4, 40, 5, 50, 1, 10, 2, 20, 3, 30, 4, 40, 5,
50
])
def test_reduce_num_reader(self):
config = input_reader_pb2.InputReader()
config.num_readers = 10
config.shuffle = False
def graph_fn():
return self._get_dataset_next(
[self._path_template % '*'], config, batch_size=20)
data = self.execute(graph_fn, [])
# Note that the execute function extracts single outputs if the return
# value is of size 1.
self.assertCountEqual(
data, [
1, 10, 2, 20, 3, 30, 4, 40, 5, 50, 1, 10, 2, 20, 3, 30, 4, 40, 5,
50
])
def test_enable_shuffle(self):
config = input_reader_pb2.InputReader()
config.num_readers = 1
config.shuffle = True
tf.set_random_seed(1) # Set graph level seed.
def graph_fn():
return self._get_dataset_next(
[self._shuffle_path_template % '*'], config, batch_size=10)
expected_non_shuffle_output = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
data = self.execute(graph_fn, [])
self.assertTrue(
np.any(np.not_equal(data, expected_non_shuffle_output)))
def test_disable_shuffle_(self):
config = input_reader_pb2.InputReader()
config.num_readers = 1
config.shuffle = False
def graph_fn():
return self._get_dataset_next(
[self._shuffle_path_template % '*'], config, batch_size=10)
expected_non_shuffle_output1 = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
expected_non_shuffle_output2 = [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]
# Note that the execute function extracts single outputs if the return
# value is of size 1.
data = self.execute(graph_fn, [])
self.assertTrue(all(data == expected_non_shuffle_output1) or
all(data == expected_non_shuffle_output2))
def test_read_dataset_single_epoch(self):
config = input_reader_pb2.InputReader()
config.num_epochs = 1
config.num_readers = 1
config.shuffle = False
def graph_fn():
return self._get_dataset_next(
[self._path_template % '0'], config, batch_size=30)
data = self.execute(graph_fn, [])
# Note that the execute function extracts single outputs if the return
# value is of size 1.
self.assertAllEqual(data, [1, 10])
# First batch will retrieve as much as it can, second batch will fail.
def graph_fn_second_batch():
return self._get_dataset_next(
[self._path_template % '0'], config, batch_size=30,
num_batches_skip=1)
self.assertRaises(tf.errors.OutOfRangeError, self.execute,
compute_fn=graph_fn_second_batch, inputs=[])
if __name__ == '__main__':
tf.test.main()