|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tests for losses_builder.""" |
|
|
|
import tensorflow.compat.v1 as tf |
|
|
|
from google.protobuf import text_format |
|
from object_detection.builders import losses_builder |
|
from object_detection.core import losses |
|
from object_detection.protos import losses_pb2 |
|
from object_detection.utils import ops |
|
|
|
|
|
class LocalizationLossBuilderTest(tf.test.TestCase): |
|
|
|
def test_build_weighted_l2_localization_loss(self): |
|
losses_text_proto = """ |
|
localization_loss { |
|
weighted_l2 { |
|
} |
|
} |
|
classification_loss { |
|
weighted_softmax { |
|
} |
|
} |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
_, localization_loss, _, _, _, _, _ = losses_builder.build(losses_proto) |
|
self.assertIsInstance(localization_loss, |
|
losses.WeightedL2LocalizationLoss) |
|
|
|
def test_build_weighted_smooth_l1_localization_loss_default_delta(self): |
|
losses_text_proto = """ |
|
localization_loss { |
|
weighted_smooth_l1 { |
|
} |
|
} |
|
classification_loss { |
|
weighted_softmax { |
|
} |
|
} |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
_, localization_loss, _, _, _, _, _ = losses_builder.build(losses_proto) |
|
self.assertIsInstance(localization_loss, |
|
losses.WeightedSmoothL1LocalizationLoss) |
|
self.assertAlmostEqual(localization_loss._delta, 1.0) |
|
|
|
def test_build_weighted_smooth_l1_localization_loss_non_default_delta(self): |
|
losses_text_proto = """ |
|
localization_loss { |
|
weighted_smooth_l1 { |
|
delta: 0.1 |
|
} |
|
} |
|
classification_loss { |
|
weighted_softmax { |
|
} |
|
} |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
_, localization_loss, _, _, _, _, _ = losses_builder.build(losses_proto) |
|
self.assertIsInstance(localization_loss, |
|
losses.WeightedSmoothL1LocalizationLoss) |
|
self.assertAlmostEqual(localization_loss._delta, 0.1) |
|
|
|
def test_build_weighted_iou_localization_loss(self): |
|
losses_text_proto = """ |
|
localization_loss { |
|
weighted_iou { |
|
} |
|
} |
|
classification_loss { |
|
weighted_softmax { |
|
} |
|
} |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
_, localization_loss, _, _, _, _, _ = losses_builder.build(losses_proto) |
|
self.assertIsInstance(localization_loss, |
|
losses.WeightedIOULocalizationLoss) |
|
|
|
def test_anchorwise_output(self): |
|
losses_text_proto = """ |
|
localization_loss { |
|
weighted_smooth_l1 { |
|
} |
|
} |
|
classification_loss { |
|
weighted_softmax { |
|
} |
|
} |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
_, localization_loss, _, _, _, _, _ = losses_builder.build(losses_proto) |
|
self.assertIsInstance(localization_loss, |
|
losses.WeightedSmoothL1LocalizationLoss) |
|
predictions = tf.constant([[[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0]]]) |
|
targets = tf.constant([[[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0]]]) |
|
weights = tf.constant([[1.0, 1.0]]) |
|
loss = localization_loss(predictions, targets, weights=weights) |
|
self.assertEqual(loss.shape, [1, 2]) |
|
|
|
def test_raise_error_on_empty_localization_config(self): |
|
losses_text_proto = """ |
|
classification_loss { |
|
weighted_softmax { |
|
} |
|
} |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
with self.assertRaises(ValueError): |
|
losses_builder._build_localization_loss(losses_proto) |
|
|
|
|
|
|
|
class ClassificationLossBuilderTest(tf.test.TestCase): |
|
|
|
def test_build_weighted_sigmoid_classification_loss(self): |
|
losses_text_proto = """ |
|
classification_loss { |
|
weighted_sigmoid { |
|
} |
|
} |
|
localization_loss { |
|
weighted_l2 { |
|
} |
|
} |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
classification_loss, _, _, _, _, _, _ = losses_builder.build(losses_proto) |
|
self.assertIsInstance(classification_loss, |
|
losses.WeightedSigmoidClassificationLoss) |
|
|
|
def test_build_weighted_sigmoid_focal_classification_loss(self): |
|
losses_text_proto = """ |
|
classification_loss { |
|
weighted_sigmoid_focal { |
|
} |
|
} |
|
localization_loss { |
|
weighted_l2 { |
|
} |
|
} |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
classification_loss, _, _, _, _, _, _ = losses_builder.build(losses_proto) |
|
self.assertIsInstance(classification_loss, |
|
losses.SigmoidFocalClassificationLoss) |
|
self.assertAlmostEqual(classification_loss._alpha, None) |
|
self.assertAlmostEqual(classification_loss._gamma, 2.0) |
|
|
|
def test_build_weighted_sigmoid_focal_loss_non_default(self): |
|
losses_text_proto = """ |
|
classification_loss { |
|
weighted_sigmoid_focal { |
|
alpha: 0.25 |
|
gamma: 3.0 |
|
} |
|
} |
|
localization_loss { |
|
weighted_l2 { |
|
} |
|
} |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
classification_loss, _, _, _, _, _, _ = losses_builder.build(losses_proto) |
|
self.assertIsInstance(classification_loss, |
|
losses.SigmoidFocalClassificationLoss) |
|
self.assertAlmostEqual(classification_loss._alpha, 0.25) |
|
self.assertAlmostEqual(classification_loss._gamma, 3.0) |
|
|
|
def test_build_weighted_softmax_classification_loss(self): |
|
losses_text_proto = """ |
|
classification_loss { |
|
weighted_softmax { |
|
} |
|
} |
|
localization_loss { |
|
weighted_l2 { |
|
} |
|
} |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
classification_loss, _, _, _, _, _, _ = losses_builder.build(losses_proto) |
|
self.assertIsInstance(classification_loss, |
|
losses.WeightedSoftmaxClassificationLoss) |
|
|
|
def test_build_weighted_logits_softmax_classification_loss(self): |
|
losses_text_proto = """ |
|
classification_loss { |
|
weighted_logits_softmax { |
|
} |
|
} |
|
localization_loss { |
|
weighted_l2 { |
|
} |
|
} |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
classification_loss, _, _, _, _, _, _ = losses_builder.build(losses_proto) |
|
self.assertIsInstance( |
|
classification_loss, |
|
losses.WeightedSoftmaxClassificationAgainstLogitsLoss) |
|
|
|
def test_build_weighted_softmax_classification_loss_with_logit_scale(self): |
|
losses_text_proto = """ |
|
classification_loss { |
|
weighted_softmax { |
|
logit_scale: 2.0 |
|
} |
|
} |
|
localization_loss { |
|
weighted_l2 { |
|
} |
|
} |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
classification_loss, _, _, _, _, _, _ = losses_builder.build(losses_proto) |
|
self.assertIsInstance(classification_loss, |
|
losses.WeightedSoftmaxClassificationLoss) |
|
|
|
def test_build_bootstrapped_sigmoid_classification_loss(self): |
|
losses_text_proto = """ |
|
classification_loss { |
|
bootstrapped_sigmoid { |
|
alpha: 0.5 |
|
} |
|
} |
|
localization_loss { |
|
weighted_l2 { |
|
} |
|
} |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
classification_loss, _, _, _, _, _, _ = losses_builder.build(losses_proto) |
|
self.assertIsInstance(classification_loss, |
|
losses.BootstrappedSigmoidClassificationLoss) |
|
|
|
def test_anchorwise_output(self): |
|
losses_text_proto = """ |
|
classification_loss { |
|
weighted_sigmoid { |
|
anchorwise_output: true |
|
} |
|
} |
|
localization_loss { |
|
weighted_l2 { |
|
} |
|
} |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
classification_loss, _, _, _, _, _, _ = losses_builder.build(losses_proto) |
|
self.assertIsInstance(classification_loss, |
|
losses.WeightedSigmoidClassificationLoss) |
|
predictions = tf.constant([[[0.0, 1.0, 0.0], [0.0, 0.5, 0.5]]]) |
|
targets = tf.constant([[[0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]]) |
|
weights = tf.constant([[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]]) |
|
loss = classification_loss(predictions, targets, weights=weights) |
|
self.assertEqual(loss.shape, [1, 2, 3]) |
|
|
|
def test_raise_error_on_empty_config(self): |
|
losses_text_proto = """ |
|
localization_loss { |
|
weighted_l2 { |
|
} |
|
} |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
with self.assertRaises(ValueError): |
|
losses_builder.build(losses_proto) |
|
|
|
|
|
|
|
class HardExampleMinerBuilderTest(tf.test.TestCase): |
|
|
|
def test_do_not_build_hard_example_miner_by_default(self): |
|
losses_text_proto = """ |
|
localization_loss { |
|
weighted_l2 { |
|
} |
|
} |
|
classification_loss { |
|
weighted_softmax { |
|
} |
|
} |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
_, _, _, _, hard_example_miner, _, _ = losses_builder.build(losses_proto) |
|
self.assertEqual(hard_example_miner, None) |
|
|
|
def test_build_hard_example_miner_for_classification_loss(self): |
|
losses_text_proto = """ |
|
localization_loss { |
|
weighted_l2 { |
|
} |
|
} |
|
classification_loss { |
|
weighted_softmax { |
|
} |
|
} |
|
hard_example_miner { |
|
loss_type: CLASSIFICATION |
|
} |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
_, _, _, _, hard_example_miner, _, _ = losses_builder.build(losses_proto) |
|
self.assertIsInstance(hard_example_miner, losses.HardExampleMiner) |
|
self.assertEqual(hard_example_miner._loss_type, 'cls') |
|
|
|
def test_build_hard_example_miner_for_localization_loss(self): |
|
losses_text_proto = """ |
|
localization_loss { |
|
weighted_l2 { |
|
} |
|
} |
|
classification_loss { |
|
weighted_softmax { |
|
} |
|
} |
|
hard_example_miner { |
|
loss_type: LOCALIZATION |
|
} |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
_, _, _, _, hard_example_miner, _, _ = losses_builder.build(losses_proto) |
|
self.assertIsInstance(hard_example_miner, losses.HardExampleMiner) |
|
self.assertEqual(hard_example_miner._loss_type, 'loc') |
|
|
|
def test_build_hard_example_miner_with_non_default_values(self): |
|
losses_text_proto = """ |
|
localization_loss { |
|
weighted_l2 { |
|
} |
|
} |
|
classification_loss { |
|
weighted_softmax { |
|
} |
|
} |
|
hard_example_miner { |
|
num_hard_examples: 32 |
|
iou_threshold: 0.5 |
|
loss_type: LOCALIZATION |
|
max_negatives_per_positive: 10 |
|
min_negatives_per_image: 3 |
|
} |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
_, _, _, _, hard_example_miner, _, _ = losses_builder.build(losses_proto) |
|
self.assertIsInstance(hard_example_miner, losses.HardExampleMiner) |
|
self.assertEqual(hard_example_miner._num_hard_examples, 32) |
|
self.assertAlmostEqual(hard_example_miner._iou_threshold, 0.5) |
|
self.assertEqual(hard_example_miner._max_negatives_per_positive, 10) |
|
self.assertEqual(hard_example_miner._min_negatives_per_image, 3) |
|
|
|
|
|
class LossBuilderTest(tf.test.TestCase): |
|
|
|
def test_build_all_loss_parameters(self): |
|
losses_text_proto = """ |
|
localization_loss { |
|
weighted_l2 { |
|
} |
|
} |
|
classification_loss { |
|
weighted_softmax { |
|
} |
|
} |
|
hard_example_miner { |
|
} |
|
classification_weight: 0.8 |
|
localization_weight: 0.2 |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
(classification_loss, localization_loss, classification_weight, |
|
localization_weight, hard_example_miner, _, |
|
_) = losses_builder.build(losses_proto) |
|
self.assertIsInstance(hard_example_miner, losses.HardExampleMiner) |
|
self.assertIsInstance(classification_loss, |
|
losses.WeightedSoftmaxClassificationLoss) |
|
self.assertIsInstance(localization_loss, |
|
losses.WeightedL2LocalizationLoss) |
|
self.assertAlmostEqual(classification_weight, 0.8) |
|
self.assertAlmostEqual(localization_weight, 0.2) |
|
|
|
def test_build_expected_sampling(self): |
|
losses_text_proto = """ |
|
localization_loss { |
|
weighted_l2 { |
|
} |
|
} |
|
classification_loss { |
|
weighted_softmax { |
|
} |
|
} |
|
hard_example_miner { |
|
} |
|
classification_weight: 0.8 |
|
localization_weight: 0.2 |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
(classification_loss, localization_loss, classification_weight, |
|
localization_weight, hard_example_miner, _, |
|
_) = losses_builder.build(losses_proto) |
|
self.assertIsInstance(hard_example_miner, losses.HardExampleMiner) |
|
self.assertIsInstance(classification_loss, |
|
losses.WeightedSoftmaxClassificationLoss) |
|
self.assertIsInstance(localization_loss, losses.WeightedL2LocalizationLoss) |
|
self.assertAlmostEqual(classification_weight, 0.8) |
|
self.assertAlmostEqual(localization_weight, 0.2) |
|
|
|
|
|
def test_build_reweighting_unmatched_anchors(self): |
|
losses_text_proto = """ |
|
localization_loss { |
|
weighted_l2 { |
|
} |
|
} |
|
classification_loss { |
|
weighted_softmax { |
|
} |
|
} |
|
hard_example_miner { |
|
} |
|
classification_weight: 0.8 |
|
localization_weight: 0.2 |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
(classification_loss, localization_loss, classification_weight, |
|
localization_weight, hard_example_miner, _, |
|
_) = losses_builder.build(losses_proto) |
|
self.assertIsInstance(hard_example_miner, losses.HardExampleMiner) |
|
self.assertIsInstance(classification_loss, |
|
losses.WeightedSoftmaxClassificationLoss) |
|
self.assertIsInstance(localization_loss, losses.WeightedL2LocalizationLoss) |
|
self.assertAlmostEqual(classification_weight, 0.8) |
|
self.assertAlmostEqual(localization_weight, 0.2) |
|
|
|
def test_raise_error_when_both_focal_loss_and_hard_example_miner(self): |
|
losses_text_proto = """ |
|
localization_loss { |
|
weighted_l2 { |
|
} |
|
} |
|
classification_loss { |
|
weighted_sigmoid_focal { |
|
} |
|
} |
|
hard_example_miner { |
|
} |
|
classification_weight: 0.8 |
|
localization_weight: 0.2 |
|
""" |
|
losses_proto = losses_pb2.Loss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
with self.assertRaises(ValueError): |
|
losses_builder.build(losses_proto) |
|
|
|
|
|
class FasterRcnnClassificationLossBuilderTest(tf.test.TestCase): |
|
|
|
def test_build_sigmoid_loss(self): |
|
losses_text_proto = """ |
|
weighted_sigmoid { |
|
} |
|
""" |
|
losses_proto = losses_pb2.ClassificationLoss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
classification_loss = losses_builder.build_faster_rcnn_classification_loss( |
|
losses_proto) |
|
self.assertIsInstance(classification_loss, |
|
losses.WeightedSigmoidClassificationLoss) |
|
|
|
def test_build_softmax_loss(self): |
|
losses_text_proto = """ |
|
weighted_softmax { |
|
} |
|
""" |
|
losses_proto = losses_pb2.ClassificationLoss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
classification_loss = losses_builder.build_faster_rcnn_classification_loss( |
|
losses_proto) |
|
self.assertIsInstance(classification_loss, |
|
losses.WeightedSoftmaxClassificationLoss) |
|
|
|
def test_build_logits_softmax_loss(self): |
|
losses_text_proto = """ |
|
weighted_logits_softmax { |
|
} |
|
""" |
|
losses_proto = losses_pb2.ClassificationLoss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
classification_loss = losses_builder.build_faster_rcnn_classification_loss( |
|
losses_proto) |
|
self.assertTrue( |
|
isinstance(classification_loss, |
|
losses.WeightedSoftmaxClassificationAgainstLogitsLoss)) |
|
|
|
def test_build_sigmoid_focal_loss(self): |
|
losses_text_proto = """ |
|
weighted_sigmoid_focal { |
|
} |
|
""" |
|
losses_proto = losses_pb2.ClassificationLoss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
classification_loss = losses_builder.build_faster_rcnn_classification_loss( |
|
losses_proto) |
|
self.assertIsInstance(classification_loss, |
|
losses.SigmoidFocalClassificationLoss) |
|
|
|
def test_build_softmax_loss_by_default(self): |
|
losses_text_proto = """ |
|
""" |
|
losses_proto = losses_pb2.ClassificationLoss() |
|
text_format.Merge(losses_text_proto, losses_proto) |
|
classification_loss = losses_builder.build_faster_rcnn_classification_loss( |
|
losses_proto) |
|
self.assertIsInstance(classification_loss, |
|
losses.WeightedSoftmaxClassificationLoss) |
|
|
|
|
|
if __name__ == '__main__': |
|
tf.test.main() |
|
|