|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Functions to build DetectionModel training optimizers.""" |
|
|
|
import tensorflow.compat.v1 as tf |
|
|
|
from object_detection.utils import learning_schedules |
|
|
|
try: |
|
from tensorflow.contrib import opt as tf_opt |
|
except: |
|
pass |
|
|
|
|
|
def build_optimizers_tf_v1(optimizer_config, global_step=None): |
|
"""Create a TF v1 compatible optimizer based on config. |
|
|
|
Args: |
|
optimizer_config: A Optimizer proto message. |
|
global_step: A variable representing the current step. |
|
If None, defaults to tf.train.get_or_create_global_step() |
|
|
|
Returns: |
|
An optimizer and a list of variables for summary. |
|
|
|
Raises: |
|
ValueError: when using an unsupported input data type. |
|
""" |
|
optimizer_type = optimizer_config.WhichOneof('optimizer') |
|
optimizer = None |
|
|
|
summary_vars = [] |
|
if optimizer_type == 'rms_prop_optimizer': |
|
config = optimizer_config.rms_prop_optimizer |
|
learning_rate = _create_learning_rate(config.learning_rate, |
|
global_step=global_step) |
|
summary_vars.append(learning_rate) |
|
optimizer = tf.train.RMSPropOptimizer( |
|
learning_rate, |
|
decay=config.decay, |
|
momentum=config.momentum_optimizer_value, |
|
epsilon=config.epsilon) |
|
|
|
if optimizer_type == 'momentum_optimizer': |
|
config = optimizer_config.momentum_optimizer |
|
learning_rate = _create_learning_rate(config.learning_rate, |
|
global_step=global_step) |
|
summary_vars.append(learning_rate) |
|
optimizer = tf.train.MomentumOptimizer( |
|
learning_rate, |
|
momentum=config.momentum_optimizer_value) |
|
|
|
if optimizer_type == 'adam_optimizer': |
|
config = optimizer_config.adam_optimizer |
|
learning_rate = _create_learning_rate(config.learning_rate, |
|
global_step=global_step) |
|
summary_vars.append(learning_rate) |
|
optimizer = tf.train.AdamOptimizer(learning_rate, epsilon=config.epsilon) |
|
|
|
|
|
if optimizer is None: |
|
raise ValueError('Optimizer %s not supported.' % optimizer_type) |
|
|
|
if optimizer_config.use_moving_average: |
|
optimizer = tf_opt.MovingAverageOptimizer( |
|
optimizer, average_decay=optimizer_config.moving_average_decay) |
|
|
|
return optimizer, summary_vars |
|
|
|
|
|
def build_optimizers_tf_v2(optimizer_config, global_step=None): |
|
"""Create a TF v2 compatible optimizer based on config. |
|
|
|
Args: |
|
optimizer_config: A Optimizer proto message. |
|
global_step: A variable representing the current step. |
|
If None, defaults to tf.train.get_or_create_global_step() |
|
|
|
Returns: |
|
An optimizer and a list of variables for summary. |
|
|
|
Raises: |
|
ValueError: when using an unsupported input data type. |
|
""" |
|
optimizer_type = optimizer_config.WhichOneof('optimizer') |
|
optimizer = None |
|
|
|
summary_vars = [] |
|
if optimizer_type == 'rms_prop_optimizer': |
|
config = optimizer_config.rms_prop_optimizer |
|
learning_rate = _create_learning_rate(config.learning_rate, |
|
global_step=global_step) |
|
summary_vars.append(learning_rate) |
|
optimizer = tf.keras.optimizers.RMSprop( |
|
learning_rate, |
|
decay=config.decay, |
|
momentum=config.momentum_optimizer_value, |
|
epsilon=config.epsilon) |
|
|
|
if optimizer_type == 'momentum_optimizer': |
|
config = optimizer_config.momentum_optimizer |
|
learning_rate = _create_learning_rate(config.learning_rate, |
|
global_step=global_step) |
|
summary_vars.append(learning_rate) |
|
optimizer = tf.keras.optimizers.SGD( |
|
learning_rate, |
|
momentum=config.momentum_optimizer_value) |
|
|
|
if optimizer_type == 'adam_optimizer': |
|
config = optimizer_config.adam_optimizer |
|
learning_rate = _create_learning_rate(config.learning_rate, |
|
global_step=global_step) |
|
summary_vars.append(learning_rate) |
|
optimizer = tf.keras.optimizers.Adam(learning_rate, epsilon=config.epsilon) |
|
|
|
if optimizer is None: |
|
raise ValueError('Optimizer %s not supported.' % optimizer_type) |
|
|
|
if optimizer_config.use_moving_average: |
|
raise ValueError('Moving average not supported in eager mode.') |
|
|
|
return optimizer, summary_vars |
|
|
|
|
|
def build(config, global_step=None): |
|
|
|
if tf.executing_eagerly(): |
|
return build_optimizers_tf_v2(config, global_step) |
|
else: |
|
return build_optimizers_tf_v1(config, global_step) |
|
|
|
|
|
def _create_learning_rate(learning_rate_config, global_step=None): |
|
"""Create optimizer learning rate based on config. |
|
|
|
Args: |
|
learning_rate_config: A LearningRate proto message. |
|
global_step: A variable representing the current step. |
|
If None, defaults to tf.train.get_or_create_global_step() |
|
|
|
Returns: |
|
A learning rate. |
|
|
|
Raises: |
|
ValueError: when using an unsupported input data type. |
|
""" |
|
if global_step is None: |
|
global_step = tf.train.get_or_create_global_step() |
|
learning_rate = None |
|
learning_rate_type = learning_rate_config.WhichOneof('learning_rate') |
|
if learning_rate_type == 'constant_learning_rate': |
|
config = learning_rate_config.constant_learning_rate |
|
learning_rate = tf.constant(config.learning_rate, dtype=tf.float32, |
|
name='learning_rate') |
|
|
|
if learning_rate_type == 'exponential_decay_learning_rate': |
|
config = learning_rate_config.exponential_decay_learning_rate |
|
learning_rate = learning_schedules.exponential_decay_with_burnin( |
|
global_step, |
|
config.initial_learning_rate, |
|
config.decay_steps, |
|
config.decay_factor, |
|
burnin_learning_rate=config.burnin_learning_rate, |
|
burnin_steps=config.burnin_steps, |
|
min_learning_rate=config.min_learning_rate, |
|
staircase=config.staircase) |
|
|
|
if learning_rate_type == 'manual_step_learning_rate': |
|
config = learning_rate_config.manual_step_learning_rate |
|
if not config.schedule: |
|
raise ValueError('Empty learning rate schedule.') |
|
learning_rate_step_boundaries = [x.step for x in config.schedule] |
|
learning_rate_sequence = [config.initial_learning_rate] |
|
learning_rate_sequence += [x.learning_rate for x in config.schedule] |
|
learning_rate = learning_schedules.manual_stepping( |
|
global_step, learning_rate_step_boundaries, |
|
learning_rate_sequence, config.warmup) |
|
|
|
if learning_rate_type == 'cosine_decay_learning_rate': |
|
config = learning_rate_config.cosine_decay_learning_rate |
|
learning_rate = learning_schedules.cosine_decay_with_warmup( |
|
global_step, |
|
config.learning_rate_base, |
|
config.total_steps, |
|
config.warmup_learning_rate, |
|
config.warmup_steps, |
|
config.hold_base_rate_steps) |
|
|
|
if learning_rate is None: |
|
raise ValueError('Learning_rate %s not supported.' % learning_rate_type) |
|
|
|
return learning_rate |
|
|