|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Utility functions for detection inference.""" |
|
from __future__ import division |
|
|
|
import tensorflow.compat.v1 as tf |
|
|
|
from object_detection.core import standard_fields |
|
|
|
|
|
def build_input(tfrecord_paths): |
|
"""Builds the graph's input. |
|
|
|
Args: |
|
tfrecord_paths: List of paths to the input TFRecords |
|
|
|
Returns: |
|
serialized_example_tensor: The next serialized example. String scalar Tensor |
|
image_tensor: The decoded image of the example. Uint8 tensor, |
|
shape=[1, None, None,3] |
|
""" |
|
filename_queue = tf.train.string_input_producer( |
|
tfrecord_paths, shuffle=False, num_epochs=1) |
|
|
|
tf_record_reader = tf.TFRecordReader() |
|
_, serialized_example_tensor = tf_record_reader.read(filename_queue) |
|
features = tf.parse_single_example( |
|
serialized_example_tensor, |
|
features={ |
|
standard_fields.TfExampleFields.image_encoded: |
|
tf.FixedLenFeature([], tf.string), |
|
}) |
|
encoded_image = features[standard_fields.TfExampleFields.image_encoded] |
|
image_tensor = tf.image.decode_image(encoded_image, channels=3) |
|
image_tensor.set_shape([None, None, 3]) |
|
image_tensor = tf.expand_dims(image_tensor, 0) |
|
|
|
return serialized_example_tensor, image_tensor |
|
|
|
|
|
def build_inference_graph(image_tensor, inference_graph_path): |
|
"""Loads the inference graph and connects it to the input image. |
|
|
|
Args: |
|
image_tensor: The input image. uint8 tensor, shape=[1, None, None, 3] |
|
inference_graph_path: Path to the inference graph with embedded weights |
|
|
|
Returns: |
|
detected_boxes_tensor: Detected boxes. Float tensor, |
|
shape=[num_detections, 4] |
|
detected_scores_tensor: Detected scores. Float tensor, |
|
shape=[num_detections] |
|
detected_labels_tensor: Detected labels. Int64 tensor, |
|
shape=[num_detections] |
|
""" |
|
with tf.gfile.Open(inference_graph_path, 'rb') as graph_def_file: |
|
graph_content = graph_def_file.read() |
|
graph_def = tf.GraphDef() |
|
graph_def.MergeFromString(graph_content) |
|
|
|
tf.import_graph_def( |
|
graph_def, name='', input_map={'image_tensor': image_tensor}) |
|
|
|
g = tf.get_default_graph() |
|
|
|
num_detections_tensor = tf.squeeze( |
|
g.get_tensor_by_name('num_detections:0'), 0) |
|
num_detections_tensor = tf.cast(num_detections_tensor, tf.int32) |
|
|
|
detected_boxes_tensor = tf.squeeze( |
|
g.get_tensor_by_name('detection_boxes:0'), 0) |
|
detected_boxes_tensor = detected_boxes_tensor[:num_detections_tensor] |
|
|
|
detected_scores_tensor = tf.squeeze( |
|
g.get_tensor_by_name('detection_scores:0'), 0) |
|
detected_scores_tensor = detected_scores_tensor[:num_detections_tensor] |
|
|
|
detected_labels_tensor = tf.squeeze( |
|
g.get_tensor_by_name('detection_classes:0'), 0) |
|
detected_labels_tensor = tf.cast(detected_labels_tensor, tf.int64) |
|
detected_labels_tensor = detected_labels_tensor[:num_detections_tensor] |
|
|
|
return detected_boxes_tensor, detected_scores_tensor, detected_labels_tensor |
|
|
|
|
|
def infer_detections_and_add_to_example( |
|
serialized_example_tensor, detected_boxes_tensor, detected_scores_tensor, |
|
detected_labels_tensor, discard_image_pixels): |
|
"""Runs the supplied tensors and adds the inferred detections to the example. |
|
|
|
Args: |
|
serialized_example_tensor: Serialized TF example. Scalar string tensor |
|
detected_boxes_tensor: Detected boxes. Float tensor, |
|
shape=[num_detections, 4] |
|
detected_scores_tensor: Detected scores. Float tensor, |
|
shape=[num_detections] |
|
detected_labels_tensor: Detected labels. Int64 tensor, |
|
shape=[num_detections] |
|
discard_image_pixels: If true, discards the image from the result |
|
Returns: |
|
The de-serialized TF example augmented with the inferred detections. |
|
""" |
|
tf_example = tf.train.Example() |
|
(serialized_example, detected_boxes, detected_scores, |
|
detected_classes) = tf.get_default_session().run([ |
|
serialized_example_tensor, detected_boxes_tensor, detected_scores_tensor, |
|
detected_labels_tensor |
|
]) |
|
detected_boxes = detected_boxes.T |
|
|
|
tf_example.ParseFromString(serialized_example) |
|
feature = tf_example.features.feature |
|
feature[standard_fields.TfExampleFields. |
|
detection_score].float_list.value[:] = detected_scores |
|
feature[standard_fields.TfExampleFields. |
|
detection_bbox_ymin].float_list.value[:] = detected_boxes[0] |
|
feature[standard_fields.TfExampleFields. |
|
detection_bbox_xmin].float_list.value[:] = detected_boxes[1] |
|
feature[standard_fields.TfExampleFields. |
|
detection_bbox_ymax].float_list.value[:] = detected_boxes[2] |
|
feature[standard_fields.TfExampleFields. |
|
detection_bbox_xmax].float_list.value[:] = detected_boxes[3] |
|
feature[standard_fields.TfExampleFields. |
|
detection_class_label].int64_list.value[:] = detected_classes |
|
|
|
if discard_image_pixels: |
|
del feature[standard_fields.TfExampleFields.image_encoded] |
|
|
|
return tf_example |
|
|