|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Keras-based transformer scaffold layer.""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
|
|
from __future__ import print_function |
|
|
|
import gin |
|
import tensorflow as tf |
|
|
|
from official.nlp.modeling.layers import attention |
|
|
|
|
|
@tf.keras.utils.register_keras_serializable(package="Text") |
|
@gin.configurable |
|
class TransformerScaffold(tf.keras.layers.Layer): |
|
"""Transformer scaffold layer. |
|
|
|
This layer implements the Transformer from "Attention Is All You Need". |
|
(https://arxiv.org/abs/1706.03762), with a customizable attention layer and |
|
feedforward layer option. Users can pass a class to |
|
`attention_cls`/`feedforward_cls` and associated config to |
|
`attention_cfg`/`feedforward_cfg`, in which case the scaffold will |
|
instantiate the class with the config, or pass a class instance to |
|
`attention_cls`/`feedforward_cls`. |
|
|
|
Arguments: |
|
num_attention_heads: Number of attention heads. |
|
intermediate_size: Size of the intermediate layer. |
|
intermediate_activation: Activation for the intermediate layer. |
|
attention_cls: A class to instantiate attention layer, or a layer instance. |
|
attention_cfg: The config with which to instantiate `attention_cls`. Ignored |
|
if attention_cls is a layer instance or None. If `attention_cls` is a |
|
class, but `attention_cfg` is None, following kwargs will be used to |
|
instantiate the attention instance: |
|
{ |
|
"num_heads": num_attention_heads, |
|
"key_size": int(hidden_size // num_attention_heads), |
|
"dropout": attention_dropout_rate, |
|
"name": "self_attention" |
|
}, where `hidden_size` is the input tensor's last dimension. |
|
feedforward_cls: A class to instantiate feedforward layer, or a layer |
|
instance. If None, will use the standard feedforward layer as described |
|
in "Attention Is All You Need" paper. If not None, the instantiated |
|
feedforward layer is expected to take the output of attention as input |
|
and its output is this transformer layer's output. |
|
feedforward_cfg: The config with which to instantiate `feedforward_cls`. |
|
Ignored if feedforward_cls is a layer instance or is None. |
|
If `feedforward_cls` is a class, but `feedforward_cfg` is None, following |
|
kwargs will be used to instantiate the feedforward instance: |
|
{ |
|
"intermediate_size": intermediate_size, |
|
"intermediate_activation": intermediate_activation, |
|
"dropout": dropout_rate, |
|
"name": "feedforward" |
|
}. |
|
dropout_rate: Dropout probability for the post-attention and output dropout. |
|
attention_dropout_rate: Dropout probability for within the attention layer. |
|
kernel_initializer: Initializer for dense layer kernels. |
|
bias_initializer: Initializer for dense layer biases. |
|
kernel_regularizer: Regularizer for dense layer kernels. |
|
bias_regularizer: Regularizer for dense layer biases. |
|
activity_regularizer: Regularizer for dense layer activity. |
|
kernel_constraint: Constraint for dense layer kernels. |
|
bias_constraint: Constraint for dense layer kernels. |
|
""" |
|
|
|
def __init__(self, |
|
num_attention_heads, |
|
intermediate_size, |
|
intermediate_activation, |
|
attention_cls=attention.MultiHeadAttention, |
|
attention_cfg=None, |
|
feedforward_cls=None, |
|
feedforward_cfg=None, |
|
dropout_rate=0.0, |
|
attention_dropout_rate=0.0, |
|
kernel_initializer="glorot_uniform", |
|
bias_initializer="zeros", |
|
kernel_regularizer=None, |
|
bias_regularizer=None, |
|
activity_regularizer=None, |
|
kernel_constraint=None, |
|
bias_constraint=None, |
|
**kwargs): |
|
super(TransformerScaffold, self).__init__(**kwargs) |
|
|
|
self._attention_cfg = attention_cfg |
|
self._attention_cls = attention_cls |
|
self._feedforward_cls = feedforward_cls |
|
self._feedforward_cfg = feedforward_cfg |
|
self._num_heads = num_attention_heads |
|
self._intermediate_size = intermediate_size |
|
self._intermediate_activation = intermediate_activation |
|
self._attention_dropout_rate = attention_dropout_rate |
|
self._dropout_rate = dropout_rate |
|
self._kernel_initializer = tf.keras.initializers.get(kernel_initializer) |
|
self._bias_initializer = tf.keras.initializers.get(bias_initializer) |
|
self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer) |
|
self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer) |
|
self._kernel_constraint = tf.keras.constraints.get(kernel_constraint) |
|
self._bias_constraint = tf.keras.constraints.get(bias_constraint) |
|
|
|
def build(self, input_shape): |
|
input_tensor = input_shape[0] if len(input_shape) == 2 else input_shape |
|
input_tensor_shape = tf.TensorShape(input_tensor) |
|
if len(input_tensor_shape) != 3: |
|
raise ValueError( |
|
"TransformerScaffold expects a three-dimensional input of " |
|
"shape [batch, sequence, width].") |
|
batch_size, sequence_length, hidden_size = input_tensor_shape |
|
|
|
if len(input_shape) == 2: |
|
mask_tensor_shape = tf.TensorShape(input_shape[1]) |
|
expected_mask_tensor_shape = tf.TensorShape( |
|
[batch_size, sequence_length, sequence_length]) |
|
if not expected_mask_tensor_shape.is_compatible_with(mask_tensor_shape): |
|
raise ValueError("When passing a mask tensor to TransformerLayer, the " |
|
"mask tensor must be of shape [batch, " |
|
"sequence_length, sequence_length] (here %s). Got a " |
|
"mask tensor of shape %s." % |
|
(expected_mask_tensor_shape, mask_tensor_shape)) |
|
if hidden_size % self._num_heads != 0: |
|
raise ValueError( |
|
"The input size (%d) is not a multiple of the number of attention " |
|
"heads (%d)" % (hidden_size, self._num_heads)) |
|
self._attention_head_size = int(hidden_size // self._num_heads) |
|
|
|
common_kwargs = dict( |
|
kernel_initializer=self._kernel_initializer, |
|
bias_initializer=self._bias_initializer, |
|
kernel_regularizer=self._kernel_regularizer, |
|
bias_regularizer=self._bias_regularizer, |
|
activity_regularizer=self._activity_regularizer, |
|
kernel_constraint=self._kernel_constraint, |
|
bias_constraint=self._bias_constraint) |
|
|
|
def get_layer_instance(instance_or_cls, config, default_config): |
|
if isinstance(instance_or_cls, tf.keras.layers.Layer): |
|
return instance_or_cls |
|
else: |
|
if config is None: |
|
return instance_or_cls(**default_config) |
|
else: |
|
return instance_or_cls(**config) |
|
|
|
default_attention_cfg = { |
|
"num_heads": self._num_heads, |
|
"key_size": self._attention_head_size, |
|
"dropout": self._attention_dropout_rate, |
|
"name": "self_attention" |
|
} |
|
default_attention_cfg.update(common_kwargs) |
|
self._attention_layer = get_layer_instance( |
|
self._attention_cls, |
|
config=self._attention_cfg, |
|
default_config=default_attention_cfg) |
|
|
|
if self._feedforward_cls is not None: |
|
default_feedforward_cfg = { |
|
"intermediate_size": self._intermediate_size, |
|
"intermediate_activation": self._intermediate_activation, |
|
"dropout": self._dropout_rate, |
|
"name": "feedforward", |
|
} |
|
default_feedforward_cfg.update(common_kwargs) |
|
self._feedforward_block = get_layer_instance( |
|
self._feedforward_cls, |
|
config=self._feedforward_cfg, |
|
default_config=default_feedforward_cfg) |
|
else: |
|
self._feedforward_block = None |
|
|
|
self._attention_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate) |
|
|
|
|
|
self._attention_layer_norm = ( |
|
tf.keras.layers.LayerNormalization( |
|
name="self_attention_layer_norm", axis=-1, epsilon=1e-12, |
|
dtype=tf.float32)) |
|
|
|
if self._feedforward_block is None: |
|
self._intermediate_dense = tf.keras.layers.experimental.EinsumDense( |
|
"abc,cd->abd", |
|
output_shape=(None, self._intermediate_size), |
|
bias_axes="d", |
|
name="intermediate", |
|
**common_kwargs) |
|
policy = tf.keras.mixed_precision.experimental.global_policy() |
|
if policy.name == "mixed_bfloat16": |
|
|
|
|
|
|
|
policy = tf.float32 |
|
self._intermediate_activation_layer = tf.keras.layers.Activation( |
|
self._intermediate_activation, dtype=policy) |
|
self._output_dense = tf.keras.layers.experimental.EinsumDense( |
|
"abc,cd->abd", |
|
output_shape=(None, hidden_size), |
|
bias_axes="d", |
|
name="output", |
|
**common_kwargs) |
|
|
|
self._output_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate) |
|
|
|
self._output_layer_norm = tf.keras.layers.LayerNormalization( |
|
name="output_layer_norm", axis=-1, epsilon=1e-12, dtype=tf.float32) |
|
|
|
super(TransformerScaffold, self).build(input_shape) |
|
|
|
def get_config(self): |
|
config = { |
|
"attention_cls": |
|
self._attention_layer, |
|
"feedforward_cls": |
|
self._feedforward_block, |
|
"num_attention_heads": |
|
self._num_heads, |
|
"intermediate_size": |
|
self._intermediate_size, |
|
"intermediate_activation": |
|
self._intermediate_activation, |
|
"dropout_rate": |
|
self._dropout_rate, |
|
"attention_dropout_rate": |
|
self._attention_dropout_rate, |
|
"kernel_initializer": |
|
tf.keras.initializers.serialize(self._kernel_initializer), |
|
"bias_initializer": |
|
tf.keras.initializers.serialize(self._bias_initializer), |
|
"kernel_regularizer": |
|
tf.keras.regularizers.serialize(self._kernel_regularizer), |
|
"bias_regularizer": |
|
tf.keras.regularizers.serialize(self._bias_regularizer), |
|
"activity_regularizer": |
|
tf.keras.regularizers.serialize(self._activity_regularizer), |
|
"kernel_constraint": |
|
tf.keras.constraints.serialize(self._kernel_constraint), |
|
"bias_constraint": |
|
tf.keras.constraints.serialize(self._bias_constraint) |
|
} |
|
base_config = super(TransformerScaffold, self).get_config() |
|
return dict(list(base_config.items()) + list(config.items())) |
|
|
|
def call(self, inputs): |
|
if isinstance(inputs, (list, tuple)) and len(inputs) == 2: |
|
input_tensor, attention_mask = inputs |
|
else: |
|
input_tensor, attention_mask = (inputs, None) |
|
|
|
attention_inputs = [input_tensor, input_tensor] |
|
|
|
attention_output = self._attention_layer(attention_inputs, attention_mask) |
|
attention_output = self._attention_dropout(attention_output) |
|
attention_output = self._attention_layer_norm(input_tensor + |
|
attention_output) |
|
if self._feedforward_block is None: |
|
intermediate_output = self._intermediate_dense(attention_output) |
|
intermediate_output = self._intermediate_activation_layer( |
|
intermediate_output) |
|
layer_output = self._output_dense(intermediate_output) |
|
layer_output = self._output_dropout(layer_output) |
|
|
|
|
|
|
|
layer_output = tf.cast(layer_output, tf.float32) |
|
layer_output = self._output_layer_norm(layer_output + attention_output) |
|
else: |
|
layer_output = self._feedforward_block(attention_output) |
|
|
|
return layer_output |
|
|