|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Eval Cross Convolutional Model.""" |
|
import io |
|
import os |
|
import sys |
|
import time |
|
|
|
import numpy as np |
|
from six.moves import xrange |
|
import tensorflow as tf |
|
|
|
import model as cross_conv_model |
|
import reader |
|
|
|
FLAGS = tf.flags.FLAGS |
|
tf.flags.DEFINE_string('log_root', '/tmp/moving_obj', 'The root dir of output.') |
|
tf.flags.DEFINE_string('data_filepattern', |
|
'est', |
|
'training data file pattern.') |
|
tf.flags.DEFINE_integer('batch_size', 1, 'Batch size.') |
|
tf.flags.DEFINE_integer('image_size', 64, 'Image height and width.') |
|
tf.flags.DEFINE_float('norm_scale', 1.0, 'Normalize the original image') |
|
tf.flags.DEFINE_float('scale', 10.0, |
|
'Scale the image after norm_scale and move the diff ' |
|
'to the positive realm.') |
|
tf.flags.DEFINE_integer('sequence_length', 2, 'tf.SequenceExample length.') |
|
tf.flags.DEFINE_integer('eval_batch_count', 100, |
|
'Average the result this number of examples.') |
|
tf.flags.DEFINE_bool('l2_loss', True, 'If true, include l2_loss.') |
|
tf.flags.DEFINE_bool('reconstr_loss', False, 'If true, include reconstr_loss.') |
|
tf.flags.DEFINE_bool('kl_loss', True, 'If true, include KL loss.') |
|
|
|
slim = tf.contrib.slim |
|
|
|
|
|
def _Eval(): |
|
params = dict() |
|
params['batch_size'] = FLAGS.batch_size |
|
params['seq_len'] = FLAGS.sequence_length |
|
params['image_size'] = FLAGS.image_size |
|
params['is_training'] = False |
|
params['norm_scale'] = FLAGS.norm_scale |
|
params['scale'] = FLAGS.scale |
|
params['l2_loss'] = FLAGS.l2_loss |
|
params['reconstr_loss'] = FLAGS.reconstr_loss |
|
params['kl_loss'] = FLAGS.kl_loss |
|
|
|
eval_dir = os.path.join(FLAGS.log_root, 'eval') |
|
|
|
images = reader.ReadInput( |
|
FLAGS.data_filepattern, shuffle=False, params=params) |
|
images *= params['scale'] |
|
|
|
image_diff_list = reader.SequenceToImageAndDiff(images) |
|
model = cross_conv_model.CrossConvModel(image_diff_list, params) |
|
model.Build() |
|
|
|
summary_writer = tf.summary.FileWriter(eval_dir) |
|
saver = tf.train.Saver() |
|
sess = tf.Session('', config=tf.ConfigProto(allow_soft_placement=True)) |
|
tf.train.start_queue_runners(sess) |
|
|
|
while True: |
|
time.sleep(60) |
|
try: |
|
ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) |
|
except tf.errors.OutOfRangeError as e: |
|
sys.stderr.write('Cannot restore checkpoint: %s\n' % e) |
|
continue |
|
if not (ckpt_state and ckpt_state.model_checkpoint_path): |
|
sys.stderr.write('No model to eval yet at %s\n' % FLAGS.log_root) |
|
continue |
|
sys.stderr.write('Loading checkpoint %s\n' % |
|
ckpt_state.model_checkpoint_path) |
|
saver.restore(sess, ckpt_state.model_checkpoint_path) |
|
|
|
if not tf.gfile.Exists(os.path.join(FLAGS.log_root, 'z_mean.npy')): |
|
sys.stderr.write('No z at %s\n' % FLAGS.log_root) |
|
continue |
|
|
|
with tf.gfile.Open(os.path.join(FLAGS.log_root, 'z_mean.npy')) as f: |
|
sample_z_mean = np.load(io.BytesIO(f.read())) |
|
with tf.gfile.Open( |
|
os.path.join(FLAGS.log_root, 'z_stddev_log.npy')) as f: |
|
sample_z_stddev_log = np.load(io.BytesIO(f.read())) |
|
|
|
total_loss = 0.0 |
|
for _ in xrange(FLAGS.eval_batch_count): |
|
loss_val, total_steps, summaries = sess.run( |
|
[model.loss, model.global_step, model.summary_op], |
|
feed_dict={model.z_mean: sample_z_mean, |
|
model.z_stddev_log: sample_z_stddev_log}) |
|
total_loss += loss_val |
|
|
|
summary_writer.add_summary(summaries, total_steps) |
|
sys.stderr.write('steps: %d, loss: %f\n' % |
|
(total_steps, total_loss / FLAGS.eval_batch_count)) |
|
|
|
|
|
def main(_): |
|
_Eval() |
|
|
|
|
|
if __name__ == '__main__': |
|
tf.app.run() |
|
|