# Lint as: python2, python3 # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """DataDecoder builder. Creates DataDecoders from InputReader configs. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from object_detection.data_decoders import tf_example_decoder from object_detection.data_decoders import tf_sequence_example_decoder from object_detection.protos import input_reader_pb2 def build(input_reader_config): """Builds a DataDecoder based only on the open source config proto. Args: input_reader_config: An input_reader_pb2.InputReader object. Returns: A DataDecoder based on the input_reader_config. Raises: ValueError: On invalid input reader proto. """ if not isinstance(input_reader_config, input_reader_pb2.InputReader): raise ValueError('input_reader_config not of type ' 'input_reader_pb2.InputReader.') if input_reader_config.WhichOneof('input_reader') == 'tf_record_input_reader': label_map_proto_file = None if input_reader_config.HasField('label_map_path'): label_map_proto_file = input_reader_config.label_map_path input_type = input_reader_config.input_type if input_type == input_reader_pb2.InputType.Value('TF_EXAMPLE'): decoder = tf_example_decoder.TfExampleDecoder( load_instance_masks=input_reader_config.load_instance_masks, load_multiclass_scores=input_reader_config.load_multiclass_scores, load_context_features=input_reader_config.load_context_features, instance_mask_type=input_reader_config.mask_type, label_map_proto_file=label_map_proto_file, use_display_name=input_reader_config.use_display_name, num_additional_channels=input_reader_config.num_additional_channels, num_keypoints=input_reader_config.num_keypoints, expand_hierarchy_labels=input_reader_config.expand_labels_hierarchy) return decoder elif input_type == input_reader_pb2.InputType.Value('TF_SEQUENCE_EXAMPLE'): decoder = tf_sequence_example_decoder.TfSequenceExampleDecoder( label_map_proto_file=label_map_proto_file, load_context_features=input_reader_config.load_context_features) return decoder raise ValueError('Unsupported input_type in config.') raise ValueError('Unsupported input_reader_config.')