# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.utils.shape_utils.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow.compat.v1 as tf from object_detection.utils import shape_utils from object_detection.utils import test_case class UtilTest(test_case.TestCase): def test_pad_tensor_using_integer_input(self): print('........pad tensor using interger input.') def graph_fn(): t1 = tf.constant([1], dtype=tf.int32) pad_t1 = shape_utils.pad_tensor(t1, 2) t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32) pad_t2 = shape_utils.pad_tensor(t2, 2) return pad_t1, pad_t2 pad_t1_result, pad_t2_result = self.execute(graph_fn, []) self.assertAllEqual([1, 0], pad_t1_result) self.assertAllClose([[0.1, 0.2], [0, 0]], pad_t2_result) def test_pad_tensor_using_tensor_input(self): def graph_fn(): t1 = tf.constant([1], dtype=tf.int32) pad_t1 = shape_utils.pad_tensor(t1, tf.constant(2)) t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32) pad_t2 = shape_utils.pad_tensor(t2, tf.constant(2)) return pad_t1, pad_t2 pad_t1_result, pad_t2_result = self.execute(graph_fn, []) self.assertAllEqual([1, 0], pad_t1_result) self.assertAllClose([[0.1, 0.2], [0, 0]], pad_t2_result) def test_clip_tensor_using_integer_input(self): def graph_fn(): t1 = tf.constant([1, 2, 3], dtype=tf.int32) clip_t1 = shape_utils.clip_tensor(t1, 2) t2 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32) clip_t2 = shape_utils.clip_tensor(t2, 2) self.assertEqual(2, clip_t1.get_shape()[0]) self.assertEqual(2, clip_t2.get_shape()[0]) return clip_t1, clip_t2 clip_t1_result, clip_t2_result = self.execute(graph_fn, []) self.assertAllEqual([1, 2], clip_t1_result) self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], clip_t2_result) def test_clip_tensor_using_tensor_input(self): def graph_fn(): t1 = tf.constant([1, 2, 3], dtype=tf.int32) clip_t1 = shape_utils.clip_tensor(t1, tf.constant(2)) t2 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32) clip_t2 = shape_utils.clip_tensor(t2, tf.constant(2)) return clip_t1, clip_t2 clip_t1_result, clip_t2_result = self.execute(graph_fn, []) self.assertAllEqual([1, 2], clip_t1_result) self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], clip_t2_result) def test_pad_or_clip_tensor_using_integer_input(self): def graph_fn(): t1 = tf.constant([1], dtype=tf.int32) tt1 = shape_utils.pad_or_clip_tensor(t1, 2) t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32) tt2 = shape_utils.pad_or_clip_tensor(t2, 2) t3 = tf.constant([1, 2, 3], dtype=tf.int32) tt3 = shape_utils.clip_tensor(t3, 2) t4 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32) tt4 = shape_utils.clip_tensor(t4, 2) self.assertEqual(2, tt1.get_shape()[0]) self.assertEqual(2, tt2.get_shape()[0]) self.assertEqual(2, tt3.get_shape()[0]) self.assertEqual(2, tt4.get_shape()[0]) return tt1, tt2, tt3, tt4 tt1_result, tt2_result, tt3_result, tt4_result = self.execute(graph_fn, []) self.assertAllEqual([1, 0], tt1_result) self.assertAllClose([[0.1, 0.2], [0, 0]], tt2_result) self.assertAllEqual([1, 2], tt3_result) self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], tt4_result) def test_pad_or_clip_tensor_using_tensor_input(self): def graph_fn(): t1 = tf.constant([1], dtype=tf.int32) tt1 = shape_utils.pad_or_clip_tensor(t1, tf.constant(2)) t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32) tt2 = shape_utils.pad_or_clip_tensor(t2, tf.constant(2)) t3 = tf.constant([1, 2, 3], dtype=tf.int32) tt3 = shape_utils.clip_tensor(t3, tf.constant(2)) t4 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32) tt4 = shape_utils.clip_tensor(t4, tf.constant(2)) return tt1, tt2, tt3, tt4 tt1_result, tt2_result, tt3_result, tt4_result = self.execute(graph_fn, []) self.assertAllEqual([1, 0], tt1_result) self.assertAllClose([[0.1, 0.2], [0, 0]], tt2_result) self.assertAllEqual([1, 2], tt3_result) self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], tt4_result) def test_combined_static_dynamic_shape(self): for n in [2, 3, 4]: tensor = tf.zeros((n, 2, 3)) combined_shape = shape_utils.combined_static_and_dynamic_shape( tensor) self.assertListEqual(combined_shape[1:], [2, 3]) def test_pad_or_clip_nd_tensor(self): def graph_fn(input_tensor): output_tensor = shape_utils.pad_or_clip_nd( input_tensor, [None, 3, 5, tf.constant(6)]) return output_tensor for n in [2, 3, 4, 5]: input_np = np.zeros((n, 5, 4, 7)) output_tensor_np = self.execute(graph_fn, [input_np]) self.assertAllEqual(output_tensor_np.shape[1:], [3, 5, 6]) class StaticOrDynamicMapFnTest(test_case.TestCase): def test_with_dynamic_shape(self): def fn(input_tensor): return tf.reduce_sum(input_tensor) def graph_fn(input_tensor): return shape_utils.static_or_dynamic_map_fn(fn, input_tensor) # The input has different shapes, but due to how self.execute() # works, the shape is known at graph compile time. result1 = self.execute( graph_fn, [np.array([[1, 2], [3, 1], [0, 4]]),]) result2 = self.execute( graph_fn, [np.array([[-1, 1], [0, 9]]),]) self.assertAllEqual(result1, [3, 4, 4]) self.assertAllEqual(result2, [0, 9]) def test_with_static_shape(self): def fn(input_tensor): return tf.reduce_sum(input_tensor) def graph_fn(): input_tensor = tf.constant([[1, 2], [3, 1], [0, 4]], dtype=tf.float32) return shape_utils.static_or_dynamic_map_fn(fn, input_tensor) result = self.execute(graph_fn, []) self.assertAllEqual(result, [3, 4, 4]) def test_with_multiple_dynamic_shapes(self): def fn(elems): input_tensor, scalar_index_tensor = elems return tf.reshape(tf.slice(input_tensor, scalar_index_tensor, [1]), []) def graph_fn(input_tensor, scalar_index_tensor): map_fn_output = shape_utils.static_or_dynamic_map_fn( fn, [input_tensor, scalar_index_tensor], dtype=tf.float32) return map_fn_output # The input has different shapes, but due to how self.execute() # works, the shape is known at graph compile time. result1 = self.execute( graph_fn, [ np.array([[1, 2, 3], [4, 5, -1], [0, 6, 9]]), np.array([[0], [2], [1]]), ]) result2 = self.execute( graph_fn, [ np.array([[-1, 1, 0], [3, 9, 30]]), np.array([[1], [0]]) ]) self.assertAllEqual(result1, [1, -1, 6]) self.assertAllEqual(result2, [1, 3]) def test_with_multiple_static_shapes(self): def fn(elems): input_tensor, scalar_index_tensor = elems return tf.reshape(tf.slice(input_tensor, scalar_index_tensor, [1]), []) def graph_fn(): input_tensor = tf.constant([[1, 2, 3], [4, 5, -1], [0, 6, 9]], dtype=tf.float32) scalar_index_tensor = tf.constant([[0], [2], [1]], dtype=tf.int32) map_fn_output = shape_utils.static_or_dynamic_map_fn( fn, [input_tensor, scalar_index_tensor], dtype=tf.float32) return map_fn_output result = self.execute(graph_fn, []) self.assertAllEqual(result, [1, -1, 6]) def test_fails_with_nested_input(self): def fn(input_tensor): return input_tensor input_tensor1 = tf.constant([1]) input_tensor2 = tf.constant([2]) with self.assertRaisesRegexp( ValueError, '`elems` must be a Tensor or list of Tensors.'): shape_utils.static_or_dynamic_map_fn( fn, [input_tensor1, [input_tensor2]], dtype=tf.float32) class CheckMinImageShapeTest(test_case.TestCase): def test_check_min_image_dim_static_shape(self): input_tensor = tf.constant(np.zeros([1, 42, 42, 3])) _ = shape_utils.check_min_image_dim(33, input_tensor) with self.assertRaisesRegexp( ValueError, 'image size must be >= 64 in both height and width.'): _ = shape_utils.check_min_image_dim(64, input_tensor) def test_check_min_image_dim_dynamic_shape(self): def graph_fn(input_tensor): return shape_utils.check_min_image_dim(33, input_tensor) self.execute(graph_fn, [np.zeros([1, 42, 42, 3])]) self.assertRaises( ValueError, self.execute, graph_fn, np.zeros([1, 32, 32, 3]) ) class AssertShapeEqualTest(test_case.TestCase): def test_unequal_static_shape_raises_exception(self): shape_a = tf.constant(np.zeros([4, 2, 2, 1])) shape_b = tf.constant(np.zeros([4, 2, 3, 1])) self.assertRaisesRegex( ValueError, 'Unequal shapes', shape_utils.assert_shape_equal, shape_utils.combined_static_and_dynamic_shape(shape_a), shape_utils.combined_static_and_dynamic_shape(shape_b) ) def test_equal_static_shape_succeeds(self): def graph_fn(): shape_a = tf.constant(np.zeros([4, 2, 2, 1])) shape_b = tf.constant(np.zeros([4, 2, 2, 1])) shape_utils.assert_shape_equal( shape_utils.combined_static_and_dynamic_shape(shape_a), shape_utils.combined_static_and_dynamic_shape(shape_b)) return tf.constant(0) self.execute(graph_fn, []) def test_unequal_dynamic_shape_raises_tf_assert(self): def graph_fn(tensor_a, tensor_b): shape_utils.assert_shape_equal( shape_utils.combined_static_and_dynamic_shape(tensor_a), shape_utils.combined_static_and_dynamic_shape(tensor_b)) return tf.constant(0) self.assertRaises(ValueError, self.execute, graph_fn, [np.zeros([1, 2, 2, 3]), np.zeros([1, 4, 4, 3])]) def test_equal_dynamic_shape_succeeds(self): def graph_fn(tensor_a, tensor_b): shape_utils.assert_shape_equal( shape_utils.combined_static_and_dynamic_shape(tensor_a), shape_utils.combined_static_and_dynamic_shape(tensor_b) ) return tf.constant(0) self.execute(graph_fn, [np.zeros([1, 2, 2, 3]), np.zeros([1, 2, 2, 3])]) def test_unequal_static_shape_along_first_dim_raises_exception(self): shape_a = tf.constant(np.zeros([4, 2, 2, 1])) shape_b = tf.constant(np.zeros([6, 2, 3, 1])) self.assertRaisesRegexp( ValueError, 'Unequal first dimension', shape_utils.assert_shape_equal_along_first_dimension, shape_utils.combined_static_and_dynamic_shape(shape_a), shape_utils.combined_static_and_dynamic_shape(shape_b) ) def test_equal_static_shape_along_first_dim_succeeds(self): def graph_fn(): shape_a = tf.constant(np.zeros([4, 2, 2, 1])) shape_b = tf.constant(np.zeros([4, 7, 2])) shape_utils.assert_shape_equal_along_first_dimension( shape_utils.combined_static_and_dynamic_shape(shape_a), shape_utils.combined_static_and_dynamic_shape(shape_b)) return tf.constant(0) self.execute(graph_fn, []) def test_unequal_dynamic_shape_along_first_dim_raises_tf_assert(self): def graph_fn(tensor_a, tensor_b): shape_utils.assert_shape_equal_along_first_dimension( shape_utils.combined_static_and_dynamic_shape(tensor_a), shape_utils.combined_static_and_dynamic_shape(tensor_b)) return tf.constant(0) self.assertRaises(ValueError, self.execute, graph_fn, [np.zeros([1, 2, 2, 3]), np.zeros([2, 4, 3])]) def test_equal_dynamic_shape_along_first_dim_succeeds(self): def graph_fn(tensor_a, tensor_b): shape_utils.assert_shape_equal_along_first_dimension( shape_utils.combined_static_and_dynamic_shape(tensor_a), shape_utils.combined_static_and_dynamic_shape(tensor_b)) return tf.constant(0) self.execute(graph_fn, [np.zeros([5, 2, 2, 3]), np.zeros([5])]) class FlattenExpandDimensionTest(test_case.TestCase): def test_flatten_given_dims(self): def graph_fn(): inputs = tf.random_uniform([5, 2, 10, 10, 3]) actual_flattened = shape_utils.flatten_dimensions(inputs, first=1, last=3) expected_flattened = tf.reshape(inputs, [5, 20, 10, 3]) return actual_flattened, expected_flattened (actual_flattened_np, expected_flattened_np) = self.execute(graph_fn, []) self.assertAllClose(expected_flattened_np, actual_flattened_np) def test_raises_value_error_incorrect_dimensions(self): inputs = tf.random_uniform([5, 2, 10, 10, 3]) self.assertRaises(ValueError, shape_utils.flatten_dimensions, inputs, first=0, last=6) def test_flatten_first_two_dimensions(self): def graph_fn(): inputs = tf.constant( [ [[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]] ], dtype=tf.int32) flattened_tensor = shape_utils.flatten_first_n_dimensions( inputs, 2) return flattened_tensor flattened_tensor_out = self.execute(graph_fn, []) expected_output = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]] self.assertAllEqual(expected_output, flattened_tensor_out) def test_expand_first_dimension(self): def graph_fn(): inputs = tf.constant( [ [1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12] ], dtype=tf.int32) dims = [3, 2] expanded_tensor = shape_utils.expand_first_dimension( inputs, dims) return expanded_tensor expanded_tensor_out = self.execute(graph_fn, []) expected_output = [ [[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]] self.assertAllEqual(expected_output, expanded_tensor_out) def test_expand_first_dimension_with_incompatible_dims(self): def graph_fn(): inputs = tf.constant( [ [[1, 2]], [[3, 4]], [[5, 6]], ], dtype=tf.int32) dims = [3, 2] expanded_tensor = shape_utils.expand_first_dimension( inputs, dims) return expanded_tensor self.assertRaises(ValueError, self.execute, graph_fn, []) if __name__ == '__main__': tf.test.main()