# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Baseline model for value estimates. Implements the value component of the neural network. In some cases this is just an additional linear layer on the policy. In other cases, it is a completely separate neural network. """ from six.moves import xrange import tensorflow as tf import numpy as np class Baseline(object): def __init__(self, env_spec, internal_policy_dim, input_prev_actions=True, input_time_step=False, input_policy_state=True, n_hidden_layers=0, hidden_dim=64, tau=0.0): self.env_spec = env_spec self.internal_policy_dim = internal_policy_dim self.input_prev_actions = input_prev_actions self.input_time_step = input_time_step self.input_policy_state = input_policy_state self.n_hidden_layers = n_hidden_layers self.hidden_dim = hidden_dim self.tau = tau self.matrix_init = tf.truncated_normal_initializer(stddev=0.01) def get_inputs(self, time_step, obs, prev_actions, internal_policy_states): """Get inputs to network as single tensor.""" inputs = [tf.ones_like(time_step)] input_dim = 1 if not self.input_policy_state: for i, (obs_dim, obs_type) in enumerate(self.env_spec.obs_dims_and_types): if self.env_spec.is_discrete(obs_type): inputs.append( tf.one_hot(obs[i], obs_dim)) input_dim += obs_dim elif self.env_spec.is_box(obs_type): cur_obs = obs[i] inputs.append(cur_obs) inputs.append(cur_obs ** 2) input_dim += obs_dim * 2 else: assert False if self.input_prev_actions: for i, (act_dim, act_type) in enumerate(self.env_spec.act_dims_and_types): if self.env_spec.is_discrete(act_type): inputs.append( tf.one_hot(prev_actions[i], act_dim)) input_dim += act_dim elif self.env_spec.is_box(act_type): inputs.append(prev_actions[i]) input_dim += act_dim else: assert False if self.input_policy_state: inputs.append(internal_policy_states) input_dim += self.internal_policy_dim if self.input_time_step: scaled_time = 0.01 * time_step inputs.extend([scaled_time, scaled_time ** 2, scaled_time ** 3]) input_dim += 3 return input_dim, tf.concat(inputs, 1) def reshape_batched_inputs(self, all_obs, all_actions, internal_policy_states, policy_logits): """Reshape inputs from [time_length, batch_size, ...] to [time_length * batch_size, ...]. This allows for computing the value estimate in one go. """ batch_size = tf.shape(all_obs[0])[1] time_length = tf.shape(all_obs[0])[0] reshaped_obs = [] for obs, (obs_dim, obs_type) in zip(all_obs, self.env_spec.obs_dims_and_types): if self.env_spec.is_discrete(obs_type): reshaped_obs.append(tf.reshape(obs, [time_length * batch_size])) elif self.env_spec.is_box(obs_type): reshaped_obs.append(tf.reshape(obs, [time_length * batch_size, obs_dim])) reshaped_prev_act = [] reshaped_policy_logits = [] for i, (act_dim, act_type) in enumerate(self.env_spec.act_dims_and_types): prev_act = all_actions[i] if self.env_spec.is_discrete(act_type): reshaped_prev_act.append( tf.reshape(prev_act, [time_length * batch_size])) elif self.env_spec.is_box(act_type): reshaped_prev_act.append( tf.reshape(prev_act, [time_length * batch_size, act_dim])) reshaped_policy_logits.append( tf.reshape(policy_logits[i], [time_length * batch_size, -1])) reshaped_internal_policy_states = tf.reshape( internal_policy_states, [time_length * batch_size, self.internal_policy_dim]) time_step = (float(self.input_time_step) * tf.expand_dims( tf.to_float(tf.range(time_length * batch_size) / batch_size), -1)) return (time_step, reshaped_obs, reshaped_prev_act, reshaped_internal_policy_states, reshaped_policy_logits) def get_values(self, all_obs, all_actions, internal_policy_states, policy_logits): """Get value estimates given input.""" batch_size = tf.shape(all_obs[0])[1] time_length = tf.shape(all_obs[0])[0] (time_step, reshaped_obs, reshaped_prev_act, reshaped_internal_policy_states, reshaped_policy_logits) = self.reshape_batched_inputs( all_obs, all_actions, internal_policy_states, policy_logits) input_dim, inputs = self.get_inputs( time_step, reshaped_obs, reshaped_prev_act, reshaped_internal_policy_states) for depth in xrange(self.n_hidden_layers): with tf.variable_scope('value_layer%d' % depth): w = tf.get_variable('w', [input_dim, self.hidden_dim]) inputs = tf.nn.tanh(tf.matmul(inputs, w)) input_dim = self.hidden_dim w_v = tf.get_variable('w_v', [input_dim, 1], initializer=self.matrix_init) values = tf.matmul(inputs, w_v) values = tf.reshape(values, [time_length, batch_size]) inputs = inputs[:-batch_size] # remove "final vals" return values, inputs, w_v class UnifiedBaseline(Baseline): """Baseline for Unified PCL.""" def get_values(self, all_obs, all_actions, internal_policy_states, policy_logits): batch_size = tf.shape(all_obs[0])[1] time_length = tf.shape(all_obs[0])[0] (time_step, reshaped_obs, reshaped_prev_act, reshaped_internal_policy_states, reshaped_policy_logits) = self.reshape_batched_inputs( all_obs, all_actions, internal_policy_states, policy_logits) def f_transform(q_values, tau): max_q = tf.reduce_max(q_values, -1, keep_dims=True) return tf.squeeze(max_q, [-1]) + tau * tf.log( tf.reduce_sum(tf.exp((q_values - max_q) / tau), -1)) assert len(reshaped_policy_logits) == 1 values = f_transform((self.tau + self.eps_lambda) * reshaped_policy_logits[0], (self.tau + self.eps_lambda)) values = tf.reshape(values, [time_length, batch_size]) # not used input_dim, inputs = self.get_inputs( time_step, reshaped_obs, reshaped_prev_act, reshaped_internal_policy_states) w_v = tf.get_variable('w_v', [input_dim, 1], initializer=self.matrix_init) inputs = inputs[:-batch_size] # remove "final vals" return values, inputs, w_v