# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Keras-based einsum layer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.python.keras import keras_parameterized # pylint: disable=g-direct-tensorflow-import from official.nlp.modeling.layers import dense_einsum # This decorator runs the test in V1, V2-Eager, and V2-Functional mode. It # guarantees forward compatibility of this code for the V2 switchover. @keras_parameterized.run_all_keras_modes class DenseEinsumLayer(keras_parameterized.TestCase): def test_3D_einsum_with_two_bound_dimensions(self): test_layer = dense_einsum.DenseEinsum( output_shape=(64,), num_summed_dimensions=2) # Create a 4-dimensional input (the first dimension is implicit). input_tensor = tf.keras.Input(shape=(None, 40, 80)) _ = test_layer(input_tensor) self.assertEqual(test_layer._einsum_string, "abcd,cde->abe") self.assertEqual(test_layer._kernel_shape, (40, 80, 64)) def test_3D_einsum_with_one_bound_dimensions(self): test_layer = dense_einsum.DenseEinsum( output_shape=(64, 32), num_summed_dimensions=1) # Create a 3-dimensional input (the first dimension is implicit). input_tensor = tf.keras.Input(shape=(None, 80)) _ = test_layer(input_tensor) self.assertEqual(test_layer._einsum_string, "abc,cde->abde") self.assertEqual(test_layer._kernel_shape, (80, 64, 32)) def test_2D_einsum_with_one_bound_dimensions(self): test_layer = dense_einsum.DenseEinsum( output_shape=(64,), num_summed_dimensions=1) # Create a 3-dimensional input (the first dimension is implicit). input_tensor = tf.keras.Input(shape=(None, 80)) _ = test_layer(input_tensor) self.assertEqual(test_layer._einsum_string, "abc,cd->abd") self.assertEqual(test_layer._kernel_shape, (80, 64)) def test_bias_term_can_be_disabled(self): # A layer created using the bias should have two weights. test_layer = dense_einsum.DenseEinsum( output_shape=64, num_summed_dimensions=1, use_bias=True) input_tensor = tf.keras.Input(shape=(None, 80)) _ = test_layer(input_tensor) self.assertEqual(2, len(test_layer.get_weights())) # A layer created without the bias should have only one weight. test_layer = dense_einsum.DenseEinsum( output_shape=64, num_summed_dimensions=1, use_bias=False) input_tensor = tf.keras.Input(shape=(None, 80)) _ = test_layer(input_tensor) self.assertEqual(1, len(test_layer.get_weights())) def test_activation(self): # Create a model that does not use an activation. no_activation_layer = dense_einsum.DenseEinsum( output_shape=64, num_summed_dimensions=1, activation=None) input_tensor = tf.keras.Input(shape=(None, 80)) output_tensor = no_activation_layer(input_tensor) no_activation_model = tf.keras.Model(input_tensor, output_tensor) # Create a model that uses a softmax activation. activation_layer = dense_einsum.DenseEinsum( output_shape=64, num_summed_dimensions=1, activation="softmax") input_tensor = tf.keras.Input(shape=(None, 80)) output_tensor = activation_layer(input_tensor) activation_model = tf.keras.Model(input_tensor, output_tensor) # Make sure the models' weights are identical. activation_model.set_weights(no_activation_model.get_weights()) # Predict using each model on the same input data. The output should be # different, since one is using a softmax - even though the models' weights # are the same. input_values = 10 * np.random.random_sample((10, 4, 80)) non_activated_data = no_activation_model.predict(input_values) activated_data = activation_model.predict(input_values) self.assertNotAllClose(activated_data, non_activated_data) def test_non_iterable_output_shape(self): test_layer = dense_einsum.DenseEinsum( output_shape=64, num_summed_dimensions=1) # Create a 3-dimensional input (the first dimension is implicit). input_tensor = tf.keras.Input(shape=(None, 80)) _ = test_layer(input_tensor) self.assertEqual(test_layer._einsum_string, "abc,cd->abd") self.assertEqual(test_layer._kernel_shape, (80, 64)) def test_with_explicit_initializer(self): test_layer = dense_einsum.DenseEinsum( output_shape=(64,), num_summed_dimensions=2, kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.02)) # Create a 4-dimensional input (the first dimension is implicit). input_tensor = tf.keras.Input(shape=(None, 40, 80)) _ = test_layer(input_tensor) self.assertEqual(test_layer._einsum_string, "abcd,cde->abe") self.assertEqual(test_layer._kernel_shape, (40, 80, 64)) if __name__ == "__main__": tf.test.main()