# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keras layer that creates a self-attention mask.""" from __future__ import absolute_import from __future__ import division # from __future__ import google_type_annotations from __future__ import print_function import tensorflow as tf from official.modeling import tf_utils @tf.keras.utils.register_keras_serializable(package='Text') class SelfAttentionMask(tf.keras.layers.Layer): """Create 3D attention mask from a 2D tensor mask. inputs[0]: from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...]. inputs[1]: to_mask: int32 Tensor of shape [batch_size, to_seq_length]. Returns: float Tensor of shape [batch_size, from_seq_length, to_seq_length]. """ def call(self, inputs): from_tensor = inputs[0] to_mask = inputs[1] from_shape = tf_utils.get_shape_list(from_tensor, expected_rank=[2, 3]) batch_size = from_shape[0] from_seq_length = from_shape[1] to_shape = tf_utils.get_shape_list(to_mask, expected_rank=2) to_seq_length = to_shape[1] to_mask = tf.cast( tf.reshape(to_mask, [batch_size, 1, to_seq_length]), dtype=from_tensor.dtype) # We don't assume that `from_tensor` is a mask (although it could be). We # don't actually care if we attend *from* padding tokens (only *to* padding) # tokens so we create a tensor of all ones. # # `broadcast_ones` = [batch_size, from_seq_length, 1] broadcast_ones = tf.ones( shape=[batch_size, from_seq_length, 1], dtype=from_tensor.dtype) # Here we broadcast along two dimensions to create the mask. mask = broadcast_ones * to_mask return mask