# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Keras-based transformer block layer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np import tensorflow as tf from tensorflow.python.keras import keras_parameterized # pylint: disable=g-direct-tensorflow-import from official.nlp.modeling.layers import transformer # This decorator runs the test in V1, V2-Eager, and V2-Functional mode. It # guarantees forward compatibility of this code for the V2 switchover. @keras_parameterized.run_all_keras_modes @parameterized.named_parameters(('base', transformer.Transformer), ('xla', transformer.CompiledTransformer)) class TransformerLayerTest(keras_parameterized.TestCase): def tearDown(self): super(TransformerLayerTest, self).tearDown() tf.keras.mixed_precision.experimental.set_policy('float32') def test_layer_creation(self, transformer_cls): test_layer = transformer_cls( num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu') sequence_length = 21 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) output_tensor = test_layer(data_tensor) # The default output of a transformer layer should be the same as the input. self.assertEqual(data_tensor.shape.as_list(), output_tensor.shape.as_list()) def test_layer_creation_with_mask(self, transformer_cls): test_layer = transformer_cls( num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu') sequence_length = 21 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) # Create a 2-dimensional input (the first dimension is implicit). mask_tensor = tf.keras.Input(shape=(sequence_length, sequence_length)) output_tensor = test_layer([data_tensor, mask_tensor]) # The default output of a transformer layer should be the same as the input. self.assertEqual(data_tensor.shape.as_list(), output_tensor.shape.as_list()) def test_layer_creation_with_incorrect_mask_fails(self, transformer_cls): test_layer = transformer_cls( num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu') sequence_length = 21 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) # Create a 2-dimensional input (the first dimension is implicit). mask_tensor = tf.keras.Input(shape=(sequence_length, sequence_length - 3)) with self.assertRaisesRegex(ValueError, 'When passing a mask tensor.*'): _ = test_layer([data_tensor, mask_tensor]) def test_layer_invocation(self, transformer_cls): test_layer = transformer_cls( num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu') sequence_length = 21 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) output_tensor = test_layer(data_tensor) # Create a model from the test layer. model = tf.keras.Model(data_tensor, output_tensor) # Invoke the model on test data. We can't validate the output data itself # (the NN is too complex) but this will rule out structural runtime errors. batch_size = 6 input_data = 10 * np.random.random_sample( (batch_size, sequence_length, width)) _ = model.predict(input_data) def test_layer_invocation_with_mask(self, transformer_cls): test_layer = transformer_cls( num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu') sequence_length = 21 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) # Create a 2-dimensional input (the first dimension is implicit). mask_tensor = tf.keras.Input(shape=(sequence_length, sequence_length)) output_tensor = test_layer([data_tensor, mask_tensor]) # Create a model from the test layer. model = tf.keras.Model([data_tensor, mask_tensor], output_tensor) # Invoke the model on test data. We can't validate the output data itself # (the NN is too complex) but this will rule out structural runtime errors. batch_size = 6 input_data = 10 * np.random.random_sample( (batch_size, sequence_length, width)) # The attention mask should be of shape (batch, from_seq_len, to_seq_len), # which here is (batch, sequence_length, sequence_length) mask_data = np.random.randint( 2, size=(batch_size, sequence_length, sequence_length)) _ = model.predict([input_data, mask_data]) def test_layer_output_range(self, transformer_cls): test_layer = transformer_cls( num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu') sequence_length = 21 width = 80 batch_size = 6 input_data = 10 * np.random.random_sample( (batch_size, sequence_length, width)) mask_data = np.random.randint( 2, size=(batch_size, sequence_length, sequence_length)) output_tensor = test_layer([input_data, mask_data]) # The layer only attends to the first token and outputs the first token # embeeding. new_layer = transformer_cls( num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu', output_range=1) _ = new_layer([input_data, mask_data]) new_layer.set_weights(test_layer.get_weights()) new_output_tensor = new_layer([input_data, mask_data]) self.assertAllClose(new_output_tensor, output_tensor[:, 0:1, :]) def test_layer_invocation_with_float16_dtype(self, transformer_cls): tf.keras.mixed_precision.experimental.set_policy('mixed_float16') test_layer = transformer_cls( num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu') sequence_length = 21 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) # Create a 2-dimensional input (the first dimension is implicit). mask_tensor = tf.keras.Input(shape=(sequence_length, sequence_length)) output_tensor = test_layer([data_tensor, mask_tensor]) # Create a model from the test layer. model = tf.keras.Model([data_tensor, mask_tensor], output_tensor) # Invoke the model on test data. We can't validate the output data itself # (the NN is too complex) but this will rule out structural runtime errors. batch_size = 6 input_data = (10 * np.random.random_sample( (batch_size, sequence_length, width))) # The attention mask should be of shape (batch, from_seq_len, to_seq_len), # which here is (batch, sequence_length, sequence_length) mask_data = np.random.randint( 2, size=(batch_size, sequence_length, sequence_length)) _ = model.predict([input_data, mask_data]) def test_transform_with_initializer(self, transformer_cls): test_layer = transformer_cls( num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu', kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.02)) sequence_length = 21 width = 80 # Create a 3-dimensional input (the first dimension is implicit). data_tensor = tf.keras.Input(shape=(sequence_length, width)) output = test_layer(data_tensor) # The default output of a transformer layer should be the same as the input. self.assertEqual(data_tensor.shape.as_list(), output.shape.as_list()) def test_dynamic_layer_sequence(self, transformer_cls): test_layer = transformer_cls( num_attention_heads=10, intermediate_size=2048, intermediate_activation='relu', kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.02)) # Create a 3-dimensional input (the first dimension is implicit). width = 30 input_tensor = tf.keras.Input(shape=(None, width)) output_tensor = test_layer(input_tensor) model = tf.keras.Model(input_tensor, output_tensor) input_length = 17 input_data = np.ones((1, input_length, width)) output_data = model.predict(input_data) self.assertAllEqual([1, input_length, width], output_data.shape) def _create_cache(batch_size, init_decode_length, num_heads, head_size): return { 'key': tf.zeros([batch_size, init_decode_length, num_heads, head_size], dtype=tf.float32), 'value': tf.zeros([batch_size, init_decode_length, num_heads, head_size], dtype=tf.float32) } @keras_parameterized.run_all_keras_modes class TransformerDecoderLayerTest(keras_parameterized.TestCase): def test_decoder_block_with_cache(self): num_attention_heads = 2 hidden_size = 16 decoder_block = transformer.TransformerDecoderLayer( num_attention_heads=num_attention_heads, intermediate_size=32, intermediate_activation='relu', dropout_rate=0.1, attention_dropout_rate=0.1) # Forward path. dummy_tensor = tf.zeros([2, 4, 16], dtype=tf.float32) dummy_mask = tf.zeros([2, 4, 4], dtype=tf.float32) inputs = [dummy_tensor, dummy_tensor, dummy_mask, dummy_mask] cache = _create_cache(2, 0, num_attention_heads, hidden_size // num_attention_heads) output, cache = decoder_block(inputs, cache) self.assertEqual(output.shape, (2, 4, hidden_size)) self.assertEqual(cache['value'].shape, (2, 4, 2, 8)) if __name__ == '__main__': tf.test.main()