# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The COCO-style evaluator. The following snippet demonstrates the use of interfaces: evaluator = COCOEvaluator(...) for _ in range(num_evals): for _ in range(num_batches_per_eval): predictions, groundtruth = predictor.predict(...) # pop a batch. evaluator.update(predictions, groundtruths) # aggregate internal stats. evaluator.evaluate() # finish one full eval. See also: https://github.com/cocodataset/cocoapi/ """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import atexit import tempfile import numpy as np from absl import logging from pycocotools import cocoeval import six import tensorflow as tf from official.vision.detection.evaluation import coco_utils from official.vision.detection.utils import class_utils class MetricWrapper(object): # This is only a wrapper for COCO metric and works on for numpy array. So it # doesn't inherit from tf.keras.layers.Layer or tf.keras.metrics.Metric. def __init__(self, evaluator): self._evaluator = evaluator def update_state(self, y_true, y_pred): labels = tf.nest.map_structure(lambda x: x.numpy(), y_true) outputs = tf.nest.map_structure(lambda x: x.numpy(), y_pred) groundtruths = {} predictions = {} for key, val in outputs.items(): if isinstance(val, tuple): val = np.concatenate(val) predictions[key] = val for key, val in labels.items(): if isinstance(val, tuple): val = np.concatenate(val) groundtruths[key] = val self._evaluator.update(predictions, groundtruths) def result(self): return self._evaluator.evaluate() def reset_states(self): return self._evaluator.reset() class COCOEvaluator(object): """COCO evaluation metric class.""" def __init__(self, annotation_file, include_mask, need_rescale_bboxes=True): """Constructs COCO evaluation class. The class provides the interface to metrics_fn in TPUEstimator. The _update_op() takes detections from each image and push them to self.detections. The _evaluate() loads a JSON file in COCO annotation format as the groundtruths and runs COCO evaluation. Args: annotation_file: a JSON file that stores annotations of the eval dataset. If `annotation_file` is None, groundtruth annotations will be loaded from the dataloader. include_mask: a boolean to indicate whether or not to include the mask eval. need_rescale_bboxes: If true bboxes in `predictions` will be rescaled back to absolute values (`image_info` is needed in this case). """ if annotation_file: if annotation_file.startswith('gs://'): _, local_val_json = tempfile.mkstemp(suffix='.json') tf.io.gfile.remove(local_val_json) tf.io.gfile.copy(annotation_file, local_val_json) atexit.register(tf.io.gfile.remove, local_val_json) else: local_val_json = annotation_file self._coco_gt = coco_utils.COCOWrapper( eval_type=('mask' if include_mask else 'box'), annotation_file=local_val_json) self._annotation_file = annotation_file self._include_mask = include_mask self._metric_names = [ 'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'ARmax1', 'ARmax10', 'ARmax100', 'ARs', 'ARm', 'ARl' ] self._required_prediction_fields = [ 'source_id', 'num_detections', 'detection_classes', 'detection_scores', 'detection_boxes' ] self._need_rescale_bboxes = need_rescale_bboxes if self._need_rescale_bboxes: self._required_prediction_fields.append('image_info') self._required_groundtruth_fields = [ 'source_id', 'height', 'width', 'classes', 'boxes' ] if self._include_mask: mask_metric_names = ['mask_' + x for x in self._metric_names] self._metric_names.extend(mask_metric_names) self._required_prediction_fields.extend(['detection_masks']) self._required_groundtruth_fields.extend(['masks']) self.reset() def reset(self): """Resets internal states for a fresh run.""" self._predictions = {} if not self._annotation_file: self._groundtruths = {} def evaluate(self): """Evaluates with detections from all images with COCO API. Returns: coco_metric: float numpy array with shape [24] representing the coco-style evaluation metrics (box and mask). """ if not self._annotation_file: logging.info('Thre is no annotation_file in COCOEvaluator.') gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset( self._groundtruths) coco_gt = coco_utils.COCOWrapper( eval_type=('mask' if self._include_mask else 'box'), gt_dataset=gt_dataset) else: logging.info('Using annotation file: %s', self._annotation_file) coco_gt = self._coco_gt coco_predictions = coco_utils.convert_predictions_to_coco_annotations( self._predictions) coco_dt = coco_gt.loadRes(predictions=coco_predictions) image_ids = [ann['image_id'] for ann in coco_predictions] coco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='bbox') coco_eval.params.imgIds = image_ids coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() coco_metrics = coco_eval.stats if self._include_mask: mcoco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='segm') mcoco_eval.params.imgIds = image_ids mcoco_eval.evaluate() mcoco_eval.accumulate() mcoco_eval.summarize() mask_coco_metrics = mcoco_eval.stats if self._include_mask: metrics = np.hstack((coco_metrics, mask_coco_metrics)) else: metrics = coco_metrics # Cleans up the internal variables in order for a fresh eval next time. self.reset() metrics_dict = {} for i, name in enumerate(self._metric_names): metrics_dict[name] = metrics[i].astype(np.float32) return metrics_dict def _process_predictions(self, predictions): image_scale = np.tile(predictions['image_info'][:, 2:3, :], (1, 1, 2)) predictions['detection_boxes'] = ( predictions['detection_boxes'].astype(np.float32)) predictions['detection_boxes'] /= image_scale if 'detection_outer_boxes' in predictions: predictions['detection_outer_boxes'] = ( predictions['detection_outer_boxes'].astype(np.float32)) predictions['detection_outer_boxes'] /= image_scale def update(self, predictions, groundtruths=None): """Update and aggregate detection results and groundtruth data. Args: predictions: a dictionary of numpy arrays including the fields below. See different parsers under `../dataloader` for more details. Required fields: - source_id: a numpy array of int or string of shape [batch_size]. - image_info [if `need_rescale_bboxes` is True]: a numpy array of float of shape [batch_size, 4, 2]. - num_detections: a numpy array of int of shape [batch_size]. - detection_boxes: a numpy array of float of shape [batch_size, K, 4]. - detection_classes: a numpy array of int of shape [batch_size, K]. - detection_scores: a numpy array of float of shape [batch_size, K]. Optional fields: - detection_masks: a numpy array of float of shape [batch_size, K, mask_height, mask_width]. groundtruths: a dictionary of numpy arrays including the fields below. See also different parsers under `../dataloader` for more details. Required fields: - source_id: a numpy array of int or string of shape [batch_size]. - height: a numpy array of int of shape [batch_size]. - width: a numpy array of int of shape [batch_size]. - num_detections: a numpy array of int of shape [batch_size]. - boxes: a numpy array of float of shape [batch_size, K, 4]. - classes: a numpy array of int of shape [batch_size, K]. Optional fields: - is_crowds: a numpy array of int of shape [batch_size, K]. If the field is absent, it is assumed that this instance is not crowd. - areas: a numy array of float of shape [batch_size, K]. If the field is absent, the area is calculated using either boxes or masks depending on which one is available. - masks: a numpy array of float of shape [batch_size, K, mask_height, mask_width], Raises: ValueError: if the required prediction or groundtruth fields are not present in the incoming `predictions` or `groundtruths`. """ for k in self._required_prediction_fields: if k not in predictions: raise ValueError( 'Missing the required key `{}` in predictions!'.format(k)) if self._need_rescale_bboxes: self._process_predictions(predictions) for k, v in six.iteritems(predictions): if k not in self._predictions: self._predictions[k] = [v] else: self._predictions[k].append(v) if not self._annotation_file: assert groundtruths for k in self._required_groundtruth_fields: if k not in groundtruths: raise ValueError( 'Missing the required key `{}` in groundtruths!'.format(k)) for k, v in six.iteritems(groundtruths): if k not in self._groundtruths: self._groundtruths[k] = [v] else: self._groundtruths[k].append(v) class ShapeMaskCOCOEvaluator(COCOEvaluator): """COCO evaluation metric class for ShapeMask.""" def __init__(self, mask_eval_class, **kwargs): """Constructs COCO evaluation class. The class provides the interface to metrics_fn in TPUEstimator. The _update_op() takes detections from each image and push them to self.detections. The _evaluate() loads a JSON file in COCO annotation format as the groundtruths and runs COCO evaluation. Args: mask_eval_class: the set of classes for mask evaluation. **kwargs: other keyword arguments passed to the parent class initializer. """ super(ShapeMaskCOCOEvaluator, self).__init__(**kwargs) self._mask_eval_class = mask_eval_class self._eval_categories = class_utils.coco_split_class_ids(mask_eval_class) if mask_eval_class != 'all': self._metric_names = [ x.replace('mask', 'novel_mask') for x in self._metric_names ] def evaluate(self): """Evaluates with detections from all images with COCO API. Returns: coco_metric: float numpy array with shape [24] representing the coco-style evaluation metrics (box and mask). """ if not self._annotation_file: gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset( self._groundtruths) coco_gt = coco_utils.COCOWrapper( eval_type=('mask' if self._include_mask else 'box'), gt_dataset=gt_dataset) else: coco_gt = self._coco_gt coco_predictions = coco_utils.convert_predictions_to_coco_annotations( self._predictions) coco_dt = coco_gt.loadRes(predictions=coco_predictions) image_ids = [ann['image_id'] for ann in coco_predictions] coco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='bbox') coco_eval.params.imgIds = image_ids coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() coco_metrics = coco_eval.stats if self._include_mask: mcoco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='segm') mcoco_eval.params.imgIds = image_ids mcoco_eval.evaluate() mcoco_eval.accumulate() mcoco_eval.summarize() if self._mask_eval_class == 'all': metrics = np.hstack((coco_metrics, mcoco_eval.stats)) else: mask_coco_metrics = mcoco_eval.category_stats val_catg_idx = np.isin(mcoco_eval.params.catIds, self._eval_categories) # Gather the valid evaluation of the eval categories. if np.any(val_catg_idx): mean_val_metrics = [] for mid in range(len(self._metric_names) // 2): mean_val_metrics.append( np.nanmean(mask_coco_metrics[mid][val_catg_idx])) mean_val_metrics = np.array(mean_val_metrics) else: mean_val_metrics = np.zeros(len(self._metric_names) // 2) metrics = np.hstack((coco_metrics, mean_val_metrics)) else: metrics = coco_metrics # Cleans up the internal variables in order for a fresh eval next time. self.reset() metrics_dict = {} for i, name in enumerate(self._metric_names): metrics_dict[name] = metrics[i].astype(np.float32) return metrics_dict