#!/usr/bin/env python # Copyright 2017, 2018 Google, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Converts a text embedding file into a binary format for quicker loading.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf tf.flags.DEFINE_string('input', '', 'text file containing embeddings') tf.flags.DEFINE_string('output_vocab', '', 'output file for vocabulary') tf.flags.DEFINE_string('output_npy', '', 'output file for binary') FLAGS = tf.flags.FLAGS def main(_): vecs = [] vocab = [] with tf.gfile.GFile(FLAGS.input) as fh: for line in fh: parts = line.strip().split() vocab.append(parts[0]) vecs.append([float(x) for x in parts[1:]]) with tf.gfile.GFile(FLAGS.output_vocab, 'w') as fh: fh.write('\n'.join(vocab)) fh.write('\n') vecs = np.array(vecs, dtype=np.float32) np.save(FLAGS.output_npy, vecs, allow_pickle=False) if __name__ == '__main__': tf.app.run()