# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for lstm_object_detection.lstm.utils.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf from lstm_object_detection.lstm import utils class QuantizableUtilsTest(tf.test.TestCase): def test_quantizable_concat_is_training(self): inputs_1 = tf.zeros([4, 10, 10, 1], dtype=tf.float32) inputs_2 = tf.ones([4, 10, 10, 2], dtype=tf.float32) concat_in_train = utils.quantizable_concat([inputs_1, inputs_2], axis=3, is_training=True) self.assertAllEqual([4, 10, 10, 3], concat_in_train.shape.as_list()) self._check_min_max_ema(tf.get_default_graph()) self._check_min_max_vars(tf.get_default_graph()) def test_quantizable_concat_inference(self): inputs_1 = tf.zeros([4, 10, 10, 1], dtype=tf.float32) inputs_2 = tf.ones([4, 10, 10, 2], dtype=tf.float32) concat_in_train = utils.quantizable_concat([inputs_1, inputs_2], axis=3, is_training=False) self.assertAllEqual([4, 10, 10, 3], concat_in_train.shape.as_list()) self._check_no_min_max_ema(tf.get_default_graph()) self._check_min_max_vars(tf.get_default_graph()) def test_quantizable_concat_not_quantized_is_training(self): inputs_1 = tf.zeros([4, 10, 10, 1], dtype=tf.float32) inputs_2 = tf.ones([4, 10, 10, 2], dtype=tf.float32) concat_in_train = utils.quantizable_concat([inputs_1, inputs_2], axis=3, is_training=True, is_quantized=False) self.assertAllEqual([4, 10, 10, 3], concat_in_train.shape.as_list()) self._check_no_min_max_ema(tf.get_default_graph()) self._check_no_min_max_vars(tf.get_default_graph()) def test_quantizable_concat_not_quantized_inference(self): inputs_1 = tf.zeros([4, 10, 10, 1], dtype=tf.float32) inputs_2 = tf.ones([4, 10, 10, 2], dtype=tf.float32) concat_in_train = utils.quantizable_concat([inputs_1, inputs_2], axis=3, is_training=False, is_quantized=False) self.assertAllEqual([4, 10, 10, 3], concat_in_train.shape.as_list()) self._check_no_min_max_ema(tf.get_default_graph()) self._check_no_min_max_vars(tf.get_default_graph()) def test_quantize_op_is_training(self): inputs = tf.zeros([4, 10, 10, 128], dtype=tf.float32) outputs = utils.quantize_op(inputs) self.assertAllEqual(inputs.shape.as_list(), outputs.shape.as_list()) self._check_min_max_ema(tf.get_default_graph()) self._check_min_max_vars(tf.get_default_graph()) def test_quantize_op_inference(self): inputs = tf.zeros([4, 10, 10, 128], dtype=tf.float32) outputs = utils.quantize_op(inputs, is_training=False) self.assertAllEqual(inputs.shape.as_list(), outputs.shape.as_list()) self._check_no_min_max_ema(tf.get_default_graph()) self._check_min_max_vars(tf.get_default_graph()) def test_fixed_quantize_op(self): inputs = tf.zeros([4, 10, 10, 128], dtype=tf.float32) outputs = utils.fixed_quantize_op(inputs) self.assertAllEqual(inputs.shape.as_list(), outputs.shape.as_list()) self._check_no_min_max_ema(tf.get_default_graph()) self._check_no_min_max_vars(tf.get_default_graph()) def _check_min_max_vars(self, graph): op_types = [op.type for op in graph.get_operations()] self.assertTrue( any('FakeQuantWithMinMaxVars' in op_type for op_type in op_types)) def _check_min_max_ema(self, graph): op_names = [op.name for op in graph.get_operations()] self.assertTrue(any('AssignMinEma' in name for name in op_names)) self.assertTrue(any('AssignMaxEma' in name for name in op_names)) self.assertTrue(any('SafeQuantRangeMin' in name for name in op_names)) self.assertTrue(any('SafeQuantRangeMax' in name for name in op_names)) def _check_no_min_max_vars(self, graph): op_types = [op.type for op in graph.get_operations()] self.assertFalse( any('FakeQuantWithMinMaxVars' in op_type for op_type in op_types)) def _check_no_min_max_ema(self, graph): op_names = [op.name for op in graph.get_operations()] self.assertFalse(any('AssignMinEma' in name for name in op_names)) self.assertFalse(any('AssignMaxEma' in name for name in op_names)) self.assertFalse(any('SafeQuantRangeMin' in name for name in op_names)) self.assertFalse(any('SafeQuantRangeMax' in name for name in op_names)) class QuantizableSeparableConv2dTest(tf.test.TestCase): def test_quantizable_separable_conv2d(self): inputs = tf.zeros([4, 10, 10, 128], dtype=tf.float32) num_outputs = 64 kernel_size = [3, 3] scope = 'QuantSeparable' outputs = utils.quantizable_separable_conv2d( inputs, num_outputs, kernel_size, scope=scope) self.assertAllEqual([4, 10, 10, num_outputs], outputs.shape.as_list()) self._check_depthwise_bias_add(tf.get_default_graph(), scope) def test_quantizable_separable_conv2d_not_quantized(self): inputs = tf.zeros([4, 10, 10, 128], dtype=tf.float32) num_outputs = 64 kernel_size = [3, 3] scope = 'QuantSeparable' outputs = utils.quantizable_separable_conv2d( inputs, num_outputs, kernel_size, is_quantized=False, scope=scope) self.assertAllEqual([4, 10, 10, num_outputs], outputs.shape.as_list()) self._check_no_depthwise_bias_add(tf.get_default_graph(), scope) def _check_depthwise_bias_add(self, graph, scope): op_names = [op.name for op in graph.get_operations()] self.assertTrue( any('%s_bias/BiasAdd' % scope in name for name in op_names)) def _check_no_depthwise_bias_add(self, graph, scope): op_names = [op.name for op in graph.get_operations()] self.assertFalse( any('%s_bias/BiasAdd' % scope in name for name in op_names)) if __name__ == '__main__': tf.test.main()