# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from datetime import datetime import json import logging import os import tensorflow as tf import tensorflow.contrib.slim as slim def prepare_dirs_and_logger(config): formatter = logging.Formatter('%(asctime)s:%(levelname)s::%(message)s') logger = logging.getLogger('tensorflow') for hdlr in logger.handlers: logger.removeHandler(hdlr) handler = logging.StreamHandler() handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(tf.logging.INFO) config.log_dir = os.path.join(config.exp_dir, config.log_dir, config.train_tag) config.model_dir = os.path.join(config.exp_dir, config.model_dir, config.train_tag) config.output_dir = os.path.join(config.exp_dir, config.output_dir, config.train_tag) for path in [ config.log_dir, config.model_dir, config.output_dir ]: if not os.path.exists(path): os.makedirs(path) config.data_files = { 'train': os.path.join(config.data_dir, config.train_data_file), 'dev': os.path.join(config.data_dir, config.dev_data_file), 'test': os.path.join(config.data_dir, config.test_data_file) } return config def get_time(): return datetime.now().strftime('%Y-%m-%d_%H-%M-%S') def show_all_variables(): model_vars = tf.trainable_variables() slim.model_analyzer.analyze_vars(model_vars, print_info=True) def save_config(config): param_path = os.path.join(config.model_dir, 'params.json') tf.logging.info('log dir: %s' % config.log_dir) tf.logging.info('model dir: %s' % config.model_dir) tf.logging.info('param path: %s' % param_path) tf.logging.info('output dir: %s' % config.output_dir) with open(param_path, 'w') as f: f.write(json.dumps(config.__dict__, indent=4, sort_keys=True))