File size: 6,975 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes benchmark testing for bert pretraining."""
# pylint: disable=line-too-long
from __future__ import print_function

import json
import os
import time
from typing import Optional

from absl import flags
from absl import logging
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.benchmark import benchmark_wrappers
from official.benchmark import bert_benchmark_utils
from official.benchmark import owner_utils
from official.nlp.bert import run_pretraining
from official.utils.flags import core as flags_core
from official.utils.misc import distribution_utils

# Pretrain masked lanauge modeling accuracy range:
MIN_MLM_ACCURACY = 0.635
MAX_MLM_ACCURACY = 0.645

# Pretrain next sentence prediction accuracy range:
MIN_NSP_ACCURACY = 0.94
MAX_NSP_ACCURACY = 0.96

BERT_PRETRAIN_FILES_SEQ128 = 'gs://mlcompass-data/bert/pretraining_data/seq_128/wikipedia.tfrecord*,gs://mlcompass-data/bert/pretraining_data/seq_128/books.tfrecord*'
BERT_BASE_CONFIG_FILE = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-12_H-768_A-12/bert_config.json'

FLAGS = flags.FLAGS


class BertPretrainAccuracyBenchmark(bert_benchmark_utils.BertBenchmarkBase):
  """Benchmark accuracy tests for BERT Pretraining."""

  def __init__(self,
               output_dir: Optional[str] = None,
               tpu: Optional[str] = None,
               **kwargs):
    """Inits BertPretrainAccuracyBenchmark class.

    Args:
      output_dir: Directory where to output e.g. log files
      tpu: TPU name to use in a TPU benchmark.
      **kwargs: Additional keyword arguments.
    """
    super(BertPretrainAccuracyBenchmark, self).__init__(
        output_dir=output_dir, tpu=tpu, **kwargs)

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self, summary_path: str, report_accuracy: bool):
    """Runs and reports the benchmark given the provided configuration."""
    distribution = distribution_utils.get_distribution_strategy(
        distribution_strategy='tpu', tpu_address=self.tpu)
    logging.info('Flags: %s', flags_core.get_nondefault_flags_as_str())
    start_time_sec = time.time()
    run_pretraining.run_bert_pretrain(
        strategy=distribution, custom_callbacks=self.timer_callback)
    wall_time_sec = time.time() - start_time_sec

    with tf.io.gfile.GFile(summary_path, 'rb') as reader:
      summary = json.loads(reader.read().decode('utf-8'))
    self._report_benchmark(summary, start_time_sec, wall_time_sec,
                           report_accuracy)

  def _report_benchmark(self, summary, start_time_sec, wall_time_sec,
                        report_accuracy):
    metrics = [{
        'name': 'train_loss',
        'value': summary['train_loss'],
    }, {
        'name':
            'exp_per_second',
        'value':
            self.timer_callback.get_examples_per_sec(FLAGS.train_batch_size *
                                                     FLAGS.steps_per_loop)
    }, {
        'name': 'startup_time',
        'value': self.timer_callback.get_startup_time(start_time_sec)
    }]
    if report_accuracy:
      metrics.extend([{
          'name': 'masked_lm_accuracy',
          'value': summary['masked_lm_accuracy'],
          'min_value': MIN_MLM_ACCURACY,
          'max_value': MAX_MLM_ACCURACY,
      }, {
          'name': 'next_sentence_accuracy',
          'value': summary['next_sentence_accuracy'],
          'min_value': MIN_NSP_ACCURACY,
          'max_value': MAX_NSP_ACCURACY,
      }])
    self.report_benchmark(
        iters=summary['total_training_steps'],
        wall_time=wall_time_sec,
        metrics=metrics,
        extras={'flags': flags_core.get_nondefault_flags_as_str()})

  def _specify_common_flags(self):
    FLAGS.bert_config_file = BERT_BASE_CONFIG_FILE
    FLAGS.train_batch_size = 512
    FLAGS.learning_rate = 1e-4
    FLAGS.warmup_steps = 10000
    FLAGS.steps_per_loop = 10000
    FLAGS.distribution_strategy = 'tpu'
    FLAGS.input_files = BERT_PRETRAIN_FILES_SEQ128
    FLAGS.max_seq_length = 128
    FLAGS.max_predictions_per_seq = 20
    FLAGS.dtype = 'bf16'

  @owner_utils.Owner('tf-model-garden')
  def benchmark_accuracy_8x8_tpu_bf16_seq128_500k_steps(self):
    """Test bert pretraining with 8x8 TPU for 500k steps."""
    # This is used for accuracy test.
    self._setup()
    self._specify_common_flags()
    FLAGS.num_steps_per_epoch = 500000
    FLAGS.num_train_epochs = 1
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_accuracy_8x8_tpu_bf16_seq128_500k_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Set train_summary_interval to -1 to disable training summary, because
    # writing summary to gcs may fail and summaries are not needed for this
    # accuracy benchmark test.
    FLAGS.train_summary_interval = -1
    self._run_and_report_benchmark(summary_path=summary_path,
                                   report_accuracy=True)

  @owner_utils.Owner('tf-model-garden')
  def benchmark_perf_4x4_tpu_bf16_seq128_10k_steps(self):
    """Test bert pretraining with 4x4 TPU for 10000 steps."""
    self._setup()
    self._specify_common_flags()
    FLAGS.num_steps_per_epoch = 5000
    FLAGS.num_train_epochs = 2
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_perf_4x4_tpu_bf16_seq128_10k_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Disable accuracy check.
    self._run_and_report_benchmark(
        summary_path=summary_path, report_accuracy=False)

  @owner_utils.Owner('tf-model-garden')
  def benchmark_perf_8x8_tpu_bf16_seq128_10k_steps(self):
    """Test bert pretraining with 8x8 TPU for 10000 steps."""
    self._setup()
    self._specify_common_flags()
    FLAGS.num_steps_per_epoch = 5000
    FLAGS.num_train_epochs = 2
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_perf_8x8_tpu_bf16_seq128_10k_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Disable accuracy check.
    self._run_and_report_benchmark(summary_path=summary_path,
                                   report_accuracy=False)


if __name__ == '__main__':
  tf.test.main()