File size: 13,604 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
from absl import flags
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.benchmark import keras_benchmark
from official.benchmark import benchmark_wrappers
from official.benchmark.models import resnet_cifar_main

MIN_TOP_1_ACCURACY = 0.929
MAX_TOP_1_ACCURACY = 0.938

FLAGS = flags.FLAGS
CIFAR_DATA_DIR_NAME = 'cifar-10-batches-bin'


class Resnet56KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Accuracy tests for ResNet56 Keras CIFAR-10."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """

    self.data_dir = os.path.join(root_data_dir, CIFAR_DATA_DIR_NAME)
    flag_methods = [resnet_cifar_main.define_cifar_flags]

    super(Resnet56KerasAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)

  def _setup(self):
    super(Resnet56KerasAccuracy, self)._setup()
    FLAGS.use_tensor_lr = False

  def benchmark_graph_1_gpu(self):
    """Test keras based model with Keras fit and distribution strategies."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
    FLAGS.dtype = 'fp32'
    self._run_and_report_benchmark()

  def benchmark_1_gpu(self):
    """Test keras based model with eager and distribution strategies."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    self._run_and_report_benchmark()

  def benchmark_cpu(self):
    """Test keras based model on CPU."""
    self._setup()
    FLAGS.num_gpus = 0
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
    FLAGS.model_dir = self._get_model_dir('benchmark_cpu')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    FLAGS.data_format = 'channels_last'
    self._run_and_report_benchmark()

  def benchmark_cpu_no_dist_strat(self):
    """Test keras based model on CPU without distribution strategies."""
    self._setup()
    FLAGS.num_gpus = 0
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
    FLAGS.model_dir = self._get_model_dir('benchmark_cpu_no_dist_strat')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.data_format = 'channels_last'
    self._run_and_report_benchmark()

  def benchmark_cpu_no_dist_strat_run_eagerly(self):
    """Test keras based model on CPU w/forced eager and no dist_strat."""
    self._setup()
    FLAGS.num_gpus = 0
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_cpu_no_dist_strat_run_eagerly')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.data_format = 'channels_last'
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat(self):
    """Test keras based model with eager and no dist strat."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'off'
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Test keras based model w/forced eager and no dist_strat."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    self._run_and_report_benchmark()

  def benchmark_graph_1_gpu_no_dist_strat(self):
    """Test keras based model with Keras fit but not distribution strategies."""
    self._setup()
    FLAGS.distribution_strategy = 'off'
    FLAGS.num_gpus = 1
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
    FLAGS.dtype = 'fp32'
    self._run_and_report_benchmark()

  def benchmark_2_gpu(self):
    """Test keras based model with eager and distribution strategies."""
    self._setup()
    FLAGS.num_gpus = 2
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    self._run_and_report_benchmark()

  def benchmark_graph_2_gpu(self):
    """Test keras based model with Keras fit and distribution strategies."""
    self._setup()
    FLAGS.num_gpus = 2
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_2_gpu')
    FLAGS.dtype = 'fp32'
    self._run_and_report_benchmark()

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
    stats = resnet_cifar_main.run(FLAGS)
    wall_time_sec = time.time() - start_time_sec

    super(Resnet56KerasAccuracy, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=MIN_TOP_1_ACCURACY,
        top_1_max=MAX_TOP_1_ACCURACY,
        total_batch_size=FLAGS.batch_size,
        log_steps=100)


class Resnet56KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Short performance tests for ResNet56 via Keras and CIFAR-10."""

  def __init__(self, output_dir=None, default_flags=None):
    flag_methods = [resnet_cifar_main.define_cifar_flags]

    super(Resnet56KerasBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags)

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
    stats = resnet_cifar_main.run(FLAGS)
    wall_time_sec = time.time() - start_time_sec

    super(Resnet56KerasBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

  def benchmark_1_gpu(self):
    """Test 1 gpu."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

  def benchmark_1_gpu_xla(self):
    """Test 1 gpu with xla enabled."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

  def benchmark_graph_1_gpu(self):
    """Test 1 gpu graph."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.run_eagerly = False
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat(self):
    """Test 1 gpu without distribution strategies."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

  def benchmark_graph_1_gpu_no_dist_strat(self):
    """Test 1 gpu graph mode without distribution strategies."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Test 1 gpu without distribution strategy and forced eager."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.batch_size = 128
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    self._run_and_report_benchmark()

  def benchmark_2_gpu(self):
    """Test 2 gpu."""
    self._setup()
    FLAGS.num_gpus = 2
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = False
    FLAGS.distribution_strategy = 'mirrored'
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu')
    FLAGS.batch_size = 128 * 2  # 2 GPUs
    self._run_and_report_benchmark()

  def benchmark_graph_2_gpu(self):
    """Test 2 gpu graph mode."""
    self._setup()
    FLAGS.num_gpus = 2
    FLAGS.enable_eager = False
    FLAGS.run_eagerly = False
    FLAGS.distribution_strategy = 'mirrored'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_2_gpu')
    FLAGS.batch_size = 128 * 2  # 2 GPUs
    self._run_and_report_benchmark()

  def benchmark_cpu(self):
    """Test cpu."""
    self._setup()
    FLAGS.num_gpus = 0
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_cpu')
    FLAGS.batch_size = 128
    FLAGS.data_format = 'channels_last'
    self._run_and_report_benchmark()

  def benchmark_graph_cpu(self):
    """Test cpu graph mode."""
    self._setup()
    FLAGS.num_gpus = 0
    FLAGS.enable_eager = False
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_cpu')
    FLAGS.batch_size = 128
    FLAGS.data_format = 'channels_last'
    self._run_and_report_benchmark()

  def benchmark_cpu_no_dist_strat_run_eagerly(self):
    """Test cpu without distribution strategy and forced eager."""
    self._setup()
    FLAGS.num_gpus = 0
    FLAGS.distribution_strategy = 'off'
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_cpu_no_dist_strat_run_eagerly')
    FLAGS.batch_size = 128
    FLAGS.data_format = 'channels_last'
    self._run_and_report_benchmark()

  def benchmark_cpu_no_dist_strat(self):
    """Test cpu without distribution strategies."""
    self._setup()
    FLAGS.num_gpus = 0
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir('benchmark_cpu_no_dist_strat')
    FLAGS.batch_size = 128
    FLAGS.data_format = 'channels_last'
    self._run_and_report_benchmark()

  def benchmark_graph_cpu_no_dist_strat(self):
    """Test cpu graph mode without distribution strategies."""
    self._setup()
    FLAGS.num_gpus = 0
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_cpu_no_dist_strat')
    FLAGS.batch_size = 128
    FLAGS.data_format = 'channels_last'
    self._run_and_report_benchmark()


class Resnet56KerasBenchmarkSynth(Resnet56KerasBenchmarkBase):
  """Synthetic benchmarks for ResNet56 and Keras."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    default_flags = {}
    default_flags['skip_eval'] = True
    default_flags['use_synthetic_data'] = True
    default_flags['train_steps'] = 110
    default_flags['log_steps'] = 10
    default_flags['use_tensor_lr'] = False

    super(Resnet56KerasBenchmarkSynth, self).__init__(
        output_dir=output_dir, default_flags=default_flags)


class Resnet56KerasBenchmarkReal(Resnet56KerasBenchmarkBase):
  """Real data benchmarks for ResNet56 and Keras."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    default_flags = {}
    default_flags['skip_eval'] = True
    default_flags['data_dir'] = os.path.join(root_data_dir, CIFAR_DATA_DIR_NAME)
    default_flags['train_steps'] = 110
    default_flags['log_steps'] = 10
    default_flags['use_tensor_lr'] = False

    super(Resnet56KerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=default_flags)


if __name__ == '__main__':
  tf.test.main()