File size: 9,731 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes RetinaNet benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

# pylint: disable=g-bad-import-order
import json
import time

from absl import flags
from absl.testing import flagsaver
import tensorflow as tf
# pylint: enable=g-bad-import-order

from official.benchmark import benchmark_wrappers
from official.benchmark import perfzero_benchmark
from official.utils.flags import core as flags_core
from official.utils.misc import keras_utils
from official.vision.detection import main as detection
from official.vision.detection.configs import base_config

FLAGS = flags.FLAGS

# pylint: disable=line-too-long
COCO_TRAIN_DATA = 'gs://tf-perfzero-data/coco/train*'
COCO_EVAL_DATA = 'gs://tf-perfzero-data/coco/val*'
COCO_EVAL_JSON = 'gs://tf-perfzero-data/coco/instances_val2017.json'
RESNET_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/retinanet/resnet50-checkpoint-2018-02-07'
# pylint: enable=line-too-long


class DetectionBenchmarkBase(perfzero_benchmark.PerfZeroBenchmark):
  """Base class to hold methods common to test classes."""

  def __init__(self, **kwargs):
    super(DetectionBenchmarkBase, self).__init__(**kwargs)
    self.timer_callback = None

  def _report_benchmark(self, stats, start_time_sec, wall_time_sec, min_ap,
                        max_ap, warmup):
    """Report benchmark results by writing to local protobuf file.

    Args:
      stats: dict returned from Detection models with known entries.
      start_time_sec: the start of the benchmark execution in seconds
      wall_time_sec: the duration of the benchmark execution in seconds
      min_ap: Minimum detection AP constraint to verify correctness of the
        model.
      max_ap: Maximum detection AP accuracy constraint to verify correctness of
        the model.
      warmup: Number of time log entries to ignore when computing examples/sec.
    """
    metrics = [{
        'name': 'total_loss',
        'value': stats['total_loss'],
    }]
    if self.timer_callback:
      metrics.append({
          'name': 'exp_per_second',
          'value': self.timer_callback.get_examples_per_sec(warmup)
      })
      metrics.append({
          'name': 'startup_time',
          'value': self.timer_callback.get_startup_time(start_time_sec)
      })
    else:
      metrics.append({
          'name': 'exp_per_second',
          'value': 0.0,
      })

    if 'eval_metrics' in stats:
      metrics.append({
          'name': 'AP',
          'value': stats['AP'],
          'min_value': min_ap,
          'max_value': max_ap,
      })
    flags_str = flags_core.get_nondefault_flags_as_str()
    self.report_benchmark(
        iters=stats['total_steps'],
        wall_time=wall_time_sec,
        metrics=metrics,
        extras={'flags': flags_str})


class RetinanetBenchmarkBase(DetectionBenchmarkBase):
  """Base class to hold methods common to test classes in the module."""

  def __init__(self, **kwargs):
    self.train_data_path = COCO_TRAIN_DATA
    self.eval_data_path = COCO_EVAL_DATA
    self.eval_json_path = COCO_EVAL_JSON
    self.resnet_checkpoint_path = RESNET_CHECKPOINT_PATH
    super(RetinanetBenchmarkBase, self).__init__(**kwargs)

  def _run_detection_main(self):
    """Starts detection job."""
    if self.timer_callback:
      FLAGS.log_steps = 0  # prevent detection.run from adding the same callback
      return detection.run(callbacks=[self.timer_callback])
    else:
      return detection.run()


class RetinanetAccuracy(RetinanetBenchmarkBase):
  """Accuracy test for RetinaNet model.

  Tests RetinaNet detection task model accuracy. The naming
  convention of below test cases follow
  `benchmark_(number of gpus)_gpu_(dataset type)` format.
  """

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                params,
                                min_ap=0.325,
                                max_ap=0.35,
                                do_eval=True,
                                warmup=1):
    """Starts RetinaNet accuracy benchmark test."""
    FLAGS.params_override = json.dumps(params)
    # Need timer callback to measure performance
    self.timer_callback = keras_utils.TimeHistory(
        batch_size=params['train']['batch_size'],
        log_steps=FLAGS.log_steps,
    )

    start_time_sec = time.time()
    FLAGS.mode = 'train'
    summary, _ = self._run_detection_main()
    wall_time_sec = time.time() - start_time_sec

    if do_eval:
      FLAGS.mode = 'eval'
      eval_metrics = self._run_detection_main()
      summary.update(eval_metrics)

    summary['total_steps'] = params['train']['total_steps']
    self._report_benchmark(summary, start_time_sec, wall_time_sec, min_ap,
                           max_ap, warmup)

  def _setup(self):
    super(RetinanetAccuracy, self)._setup()
    FLAGS.model = 'retinanet'

  def _params(self):
    return {
        'architecture': {
            'use_bfloat16': True,
        },
        'train': {
            'batch_size': 64,
            'iterations_per_loop': 100,
            'total_steps': 22500,
            'train_file_pattern': self.train_data_path,
            'checkpoint': {
                'path': self.resnet_checkpoint_path,
                'prefix': 'resnet50/'
            },
            # Speed up ResNet training when loading from the checkpoint.
            'frozen_variable_prefix': base_config.RESNET_FROZEN_VAR_PREFIX,
        },
        'eval': {
            'batch_size': 8,
            'eval_samples': 5000,
            'val_json_file': self.eval_json_path,
            'eval_file_pattern': self.eval_data_path,
        },
    }

  @flagsaver.flagsaver
  def benchmark_8_gpu_coco(self):
    """Run RetinaNet model accuracy test with 8 GPUs."""
    self._setup()
    params = self._params()
    FLAGS.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_coco')
    FLAGS.strategy_type = 'mirrored'
    self._run_and_report_benchmark(params)


class RetinanetBenchmarkReal(RetinanetAccuracy):
  """Short benchmark performance tests for RetinaNet model.

  Tests RetinaNet performance in different GPU configurations.
  The naming convention of below test cases follow
  `benchmark_(number of gpus)_gpu` format.
  """

  def _setup(self):
    super(RetinanetBenchmarkReal, self)._setup()
    # Use negative value to avoid saving checkpoints.
    FLAGS.save_checkpoint_freq = -1

  @flagsaver.flagsaver
  def benchmark_8_gpu_coco(self):
    """Run RetinaNet model accuracy test with 8 GPUs."""
    self._setup()
    params = self._params()
    params['architecture']['use_bfloat16'] = False
    params['train']['total_steps'] = 1875  # One epoch.
    # The iterations_per_loop must be one, otherwise the number of examples per
    # second would be wrong. Currently only support calling callback per batch
    # when each loop only runs on one batch, i.e. host loop for one step. The
    # performance of this situation might be lower than the case of
    # iterations_per_loop > 1.
    # Related bug: b/135933080
    params['train']['iterations_per_loop'] = 1
    params['eval']['eval_samples'] = 8
    FLAGS.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('real_benchmark_8_gpu_coco')
    FLAGS.strategy_type = 'mirrored'
    self._run_and_report_benchmark(params)

  @flagsaver.flagsaver
  def benchmark_1_gpu_coco(self):
    """Run RetinaNet model accuracy test with 1 GPU."""
    self._setup()
    params = self._params()
    params['architecture']['use_bfloat16'] = False
    params['train']['batch_size'] = 8
    params['train']['total_steps'] = 200
    params['train']['iterations_per_loop'] = 1
    params['eval']['eval_samples'] = 8
    FLAGS.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('real_benchmark_1_gpu_coco')
    FLAGS.strategy_type = 'one_device'
    self._run_and_report_benchmark(params)

  @flagsaver.flagsaver
  def benchmark_xla_1_gpu_coco(self):
    """Run RetinaNet model accuracy test with 1 GPU and XLA enabled."""
    self._setup()
    params = self._params()
    params['architecture']['use_bfloat16'] = False
    params['train']['batch_size'] = 8
    params['train']['total_steps'] = 200
    params['train']['iterations_per_loop'] = 1
    params['eval']['eval_samples'] = 8
    FLAGS.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('real_benchmark_xla_1_gpu_coco')
    FLAGS.strategy_type = 'one_device'
    FLAGS.enable_xla = True
    self._run_and_report_benchmark(params)

  @flagsaver.flagsaver
  def benchmark_2x2_tpu_coco(self):
    """Run RetinaNet model accuracy test with 4 TPUs."""
    self._setup()
    params = self._params()
    params['train']['batch_size'] = 64
    params['train']['total_steps'] = 1875  # One epoch.
    params['train']['iterations_per_loop'] = 500
    FLAGS.model_dir = self._get_model_dir('real_benchmark_2x2_tpu_coco')
    FLAGS.strategy_type = 'tpu'
    self._run_and_report_benchmark(params, do_eval=False, warmup=0)


if __name__ == '__main__':
  tf.test.main()