File size: 1,836 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras-based transformer block layer."""
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function
import functools
import tensorflow as tf
class TfFunctionIfEagerDecorator(object):
"""Helper decorator function to optionally apply the @tf.function annotation."""
def __init__(self, **kwargs):
self.func_kwargs = kwargs
def __call__(self, func):
@functools.wraps(func)
def wrapped_func(*args):
# TODO(b/150147476, b/150024785): Fix tf.function in TF1 crash.
if not hasattr(tf.compat.v1, "executing_eagerly_outside_functions"
) or tf.compat.v1.executing_eagerly_outside_functions():
return tf.function(func=func, **self.func_kwargs)(*args)
return func(*args)
# Cache the created function in self._call_impl.
if not hasattr(self, "_call_impl"):
self._call_impl = wrapped_func
return self._call_impl
def tf_function_if_eager(**kwargs):
"""Applies the @tf.function decorator only if running in eager mode."""
return TfFunctionIfEagerDecorator(**kwargs)
|