File size: 3,523 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# Lint as: python3
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utils to annotate and trace benchmarks."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from absl import flags
from absl import logging
from absl.testing import flagsaver

FLAGS = flags.FLAGS

flags.DEFINE_multi_string(
    'benchmark_method_flags', None,
    'Optional list of runtime flags of the form key=value. Specify '
    'multiple times to specify different flags. These will override the FLAGS '
    'object directly after hardcoded settings in individual benchmark methods '
    'before they call _run_and_report benchmark. Example if we set '
    '--benchmark_method_flags=train_steps=10 and a benchmark method hardcodes '
    'FLAGS.train_steps=10000 and later calls _run_and_report_benchmark, '
    'it\'ll only run for 10 steps. This is useful for '
    'debugging/profiling workflows.')


def enable_runtime_flags(decorated_func):
  """Sets attributes from --benchmark_method_flags for method execution.

  @enable_runtime_flags decorator temporarily adds flags passed in via
  --benchmark_method_flags and runs the decorated function in that context.

  A user can set --benchmark_method_flags=train_steps=5 to run the benchmark
  method in the snippet below with FLAGS.train_steps=5 for debugging (without
  modifying the benchmark code).

  class ModelBenchmark():

    @benchmark_wrappers.enable_runtime_flags
    def _run_and_report_benchmark(self):
      # run benchmark ...
      # report benchmark results ...

    def benchmark_method(self):
      FLAGS.train_steps = 1000
      ...
      self._run_and_report_benchmark()

  Args:
    decorated_func: The method that runs the benchmark after previous setup
      execution that set some flags.

  Returns:
    new_func: The same method which executes in a temporary context where flag
      overrides from --benchmark_method_flags are active.
  """

  def runner(*args, **kwargs):
    """Creates a temporary context to activate --benchmark_method_flags."""
    if FLAGS.benchmark_method_flags:
      saved_flag_values = flagsaver.save_flag_values()
      for key_value in FLAGS.benchmark_method_flags:
        key, value = key_value.split('=', 1)
        try:
          numeric_float = float(value)
          numeric_int = int(numeric_float)
          if abs(numeric_int) == abs(numeric_float):
            flag_value = numeric_int
          else:
            flag_value = numeric_float
        except ValueError:
          flag_value = value
        logging.info('Setting --%s=%s', key, flag_value)
        setattr(FLAGS, key, flag_value)
    else:
      saved_flag_values = None
    try:
      result = decorated_func(*args, **kwargs)
      return result
    finally:
      if saved_flag_values:
        flagsaver.restore_flag_values(saved_flag_values)

  return runner