File size: 15,340 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes CTL benchmarks and accuracy tests."""
# pylint: disable=line-too-long,g-bad-import-order
from __future__ import print_function
import os
import time
from absl import flags
import tensorflow as tf
from official.benchmark import owner_utils
from official.vision.image_classification.resnet import common
from official.vision.image_classification.resnet import resnet_ctl_imagenet_main
from official.benchmark.perfzero_benchmark import PerfZeroBenchmark
from official.benchmark import benchmark_wrappers
from official.utils.flags import core as flags_core
MIN_TOP_1_ACCURACY = 0.76
MAX_TOP_1_ACCURACY = 0.77
FLAGS = flags.FLAGS
class CtlBenchmark(PerfZeroBenchmark):
"""Base benchmark class with methods to simplify testing."""
def __init__(self, output_dir=None, default_flags=None, flag_methods=None):
self.default_flags = default_flags or {}
self.flag_methods = flag_methods or {}
super(CtlBenchmark, self).__init__(
output_dir=output_dir,
default_flags=self.default_flags,
flag_methods=self.flag_methods)
def _report_benchmark(self,
stats,
wall_time_sec,
top_1_max=None,
top_1_min=None,
total_batch_size=None,
log_steps=None,
warmup=1,
start_time_sec=None):
"""Report benchmark results by writing to local protobuf file.
Args:
stats: dict returned from keras models with known entries.
wall_time_sec: the during of the benchmark execution in seconds
top_1_max: highest passing level for top_1 accuracy.
top_1_min: lowest passing level for top_1 accuracy.
total_batch_size: Global batch-size.
log_steps: How often the log was created for stats['step_timestamp_log'].
warmup: number of entries in stats['step_timestamp_log'] to ignore.
start_time_sec: the start time of the program in seconds since epoch.
"""
metrics = []
if 'eval_acc' in stats:
metrics.append({
'name': 'accuracy_top_1',
'value': stats['eval_acc'],
'min_value': top_1_min,
'max_value': top_1_max
})
metrics.append({'name': 'eval_loss', 'value': stats['eval_loss']})
metrics.append({
'name': 'top_1_train_accuracy',
'value': stats['train_acc']
})
metrics.append({'name': 'train_loss', 'value': stats['train_loss']})
if (warmup and 'step_timestamp_log' in stats and
len(stats['step_timestamp_log']) > warmup + 1):
# first entry in the time_log is start of step 0. The rest of the
# entries are the end of each step recorded
time_log = stats['step_timestamp_log']
steps_elapsed = time_log[-1].batch_index - time_log[warmup].batch_index
time_elapsed = time_log[-1].timestamp - time_log[warmup].timestamp
examples_per_sec = total_batch_size * (steps_elapsed / time_elapsed)
metrics.append({'name': 'exp_per_second', 'value': examples_per_sec})
if 'avg_exp_per_second' in stats:
metrics.append({
'name': 'avg_exp_per_second',
'value': stats['avg_exp_per_second']
})
if start_time_sec and 'step_timestamp_log' in stats:
time_log = stats['step_timestamp_log']
# time_log[0] is recorded at the beginning of the first step.
startup_time = time_log[0].timestamp - start_time_sec
metrics.append({'name': 'startup_time', 'value': startup_time})
flags_str = flags_core.get_nondefault_flags_as_str()
self.report_benchmark(
iters=-1,
wall_time=wall_time_sec,
metrics=metrics,
extras={'flags': flags_str})
class Resnet50CtlAccuracy(CtlBenchmark):
"""Benchmark accuracy tests for ResNet50 in CTL."""
def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
"""A benchmark class.
Args:
output_dir: directory where to output e.g. log files
root_data_dir: directory under which to look for dataset
**kwargs: arbitrary named arguments. This is needed to make the
constructor forward compatible in case PerfZero provides more named
arguments before updating the constructor.
"""
flag_methods = [common.define_keras_flags]
self.data_dir = os.path.join(root_data_dir, 'imagenet')
super(Resnet50CtlAccuracy, self).__init__(
output_dir=output_dir, flag_methods=flag_methods)
def benchmark_8_gpu(self):
"""Test Keras model with eager, dist_strat and 8 GPUs."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.data_dir = self.data_dir
FLAGS.batch_size = 128 * 8
FLAGS.train_epochs = 90
FLAGS.epochs_between_evals = 10
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
FLAGS.dtype = 'fp32'
self._run_and_report_benchmark()
def benchmark_8_gpu_fp16(self):
"""Test Keras model with eager, 8 GPUs with tf.keras mixed precision."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.data_dir = self.data_dir
FLAGS.batch_size = 256 * 8
FLAGS.train_epochs = 90
FLAGS.epochs_between_evals = 10
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
FLAGS.dtype = 'fp16'
self._run_and_report_benchmark()
def benchmark_8_gpu_amp(self):
"""Test Keras model with 8 GPUs and mixed precision via graph rewrite."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.data_dir = self.data_dir
FLAGS.batch_size = 256 * 8
FLAGS.train_epochs = 90
FLAGS.epochs_between_evals = 10
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
FLAGS.dtype = 'fp16'
FLAGS.fp16_implementation = 'graph_rewrite'
self._run_and_report_benchmark()
@benchmark_wrappers.enable_runtime_flags
def _run_and_report_benchmark(self):
start_time_sec = time.time()
stats = resnet_ctl_imagenet_main.run(flags.FLAGS)
wall_time_sec = time.time() - start_time_sec
super(Resnet50CtlAccuracy, self)._report_benchmark(
stats,
wall_time_sec,
top_1_min=MIN_TOP_1_ACCURACY,
top_1_max=MAX_TOP_1_ACCURACY,
total_batch_size=FLAGS.batch_size,
log_steps=100,
start_time_sec=start_time_sec)
class Resnet50CtlBenchmarkBase(CtlBenchmark):
"""Resnet50 benchmarks."""
def __init__(self, output_dir=None, default_flags=None):
flag_methods = [common.define_keras_flags]
super(Resnet50CtlBenchmarkBase, self).__init__(
output_dir=output_dir,
flag_methods=flag_methods,
default_flags=default_flags)
@benchmark_wrappers.enable_runtime_flags
def _run_and_report_benchmark(self):
start_time_sec = time.time()
stats = resnet_ctl_imagenet_main.run(FLAGS)
wall_time_sec = time.time() - start_time_sec
# Warmup means the number of logged step time entries that are excluded in
# performance report. Default to exclude 1 FLAGS.log_steps time.
super(Resnet50CtlBenchmarkBase, self)._report_benchmark(
stats,
wall_time_sec,
total_batch_size=FLAGS.batch_size,
log_steps=FLAGS.log_steps,
warmup=1,
start_time_sec=start_time_sec)
def benchmark_1_gpu_no_dist_strat(self):
"""Test Keras model with 1 GPU, no distribution strategy."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.distribution_strategy = 'off'
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
FLAGS.batch_size = 128
self._run_and_report_benchmark()
def benchmark_1_gpu(self):
"""Test Keras model with 1 GPU."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.distribution_strategy = 'one_device'
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
FLAGS.batch_size = 128
self._run_and_report_benchmark()
def benchmark_1_gpu_fp16(self):
"""Test Keras model with 1 GPU with tf.keras mixed precision."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.distribution_strategy = 'one_device'
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
FLAGS.batch_size = 256
FLAGS.dtype = 'fp16'
self._run_and_report_benchmark()
def benchmark_1_gpu_amp(self):
"""Test Keras model with 1 GPU with automatic mixed precision."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.distribution_strategy = 'one_device'
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp')
FLAGS.batch_size = 256
FLAGS.dtype = 'fp16'
FLAGS.fp16_implementation = 'graph_rewrite'
self._run_and_report_benchmark()
def benchmark_xla_1_gpu_amp(self):
"""Test Keras model with XLA and 1 GPU with automatic mixed precision."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.distribution_strategy = 'one_device'
FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp')
FLAGS.batch_size = 256
FLAGS.dtype = 'fp16'
FLAGS.fp16_implementation = 'graph_rewrite'
FLAGS.enable_xla = True
self._run_and_report_benchmark()
def benchmark_1_gpu_eager(self):
"""Test Keras model with 1 GPU in pure eager mode."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.distribution_strategy = 'one_device'
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_eager')
FLAGS.batch_size = 120
FLAGS.use_tf_function = False
FLAGS.use_tf_while_loop = False
FLAGS.single_l2_loss_op = True
self._run_and_report_benchmark()
def benchmark_1_gpu_fp16_eager(self):
"""Test Keras model with 1 GPU with fp16 and pure eager mode."""
self._setup()
FLAGS.num_gpus = 1
FLAGS.distribution_strategy = 'one_device'
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_eager')
FLAGS.batch_size = 240
FLAGS.dtype = 'fp16'
FLAGS.use_tf_function = False
FLAGS.use_tf_while_loop = False
FLAGS.single_l2_loss_op = True
self._run_and_report_benchmark()
def benchmark_8_gpu(self):
"""Test Keras model with 8 GPUs."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.distribution_strategy = 'mirrored'
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
FLAGS.batch_size = 128 * 8 # 8 GPUs
self._run_and_report_benchmark()
def benchmark_8_gpu_fp16(self):
"""Test Keras model with 8 GPUs with tf.keras mixed precision."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.distribution_strategy = 'mirrored'
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
FLAGS.batch_size = 256 * 8 # 8 GPUs
FLAGS.dtype = 'fp16'
self._run_and_report_benchmark()
def benchmark_8_gpu_eager(self):
"""Test Keras model with 8 GPUs, eager, fp32."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.use_tf_function = False
FLAGS.use_tf_while_loop = False
FLAGS.distribution_strategy = 'mirrored'
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_eager')
FLAGS.batch_size = 128
self._run_and_report_benchmark()
def benchmark_8_gpu_eager_fp16(self):
"""Test Keras model with 8 GPUs, eager, fp16."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.dtype = 'fp16'
FLAGS.use_tf_function = False
FLAGS.use_tf_while_loop = False
FLAGS.distribution_strategy = 'mirrored'
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_eager_fp16')
FLAGS.batch_size = 128
self._run_and_report_benchmark()
def benchmark_8_gpu_amp(self):
"""Test Keras model with 8 GPUs with automatic mixed precision."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.distribution_strategy = 'mirrored'
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
FLAGS.batch_size = 256 * 8 # 8 GPUs
FLAGS.dtype = 'fp16'
FLAGS.fp16_implementation = 'graph_rewrite'
self._run_and_report_benchmark()
def benchmark_xla_8_gpu_amp(self):
"""Test Keras model with XLA and 8 GPUs with automatic mixed precision."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.distribution_strategy = 'mirrored'
FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_amp')
FLAGS.batch_size = 256 * 8 # 8 GPUs
FLAGS.dtype = 'fp16'
FLAGS.fp16_implementation = 'graph_rewrite'
FLAGS.enable_xla = True
self._run_and_report_benchmark()
def _set_df_common(self):
FLAGS.steps_per_loop = 500
FLAGS.train_epochs = 2
FLAGS.train_steps = None
FLAGS.skip_eval = True
FLAGS.enable_eager = True
FLAGS.enable_tensorboard = False
FLAGS.distribution_strategy = 'tpu'
FLAGS.report_accuracy_metrics = False
FLAGS.log_steps = 50
FLAGS.single_l2_loss_op = True
FLAGS.use_tf_function = True
FLAGS.enable_checkpoint_and_export = False
def benchmark_2x2_tpu_bf16(self):
self._setup()
self._set_df_common()
FLAGS.batch_size = 1024
FLAGS.dtype = 'bf16'
self._run_and_report_benchmark()
def benchmark_4x4_tpu_bf16(self):
self._setup()
self._set_df_common()
FLAGS.batch_size = 4096
FLAGS.dtype = 'bf16'
self._run_and_report_benchmark()
@owner_utils.Owner('tf-graph-compiler')
def benchmark_4x4_tpu_bf16_mlir(self):
"""Run resnet model on 4x4 with the MLIR Bridge enabled."""
self._setup()
self._set_df_common()
FLAGS.batch_size = 4096
FLAGS.dtype = 'bf16'
tf.config.experimental.enable_mlir_bridge()
self._run_and_report_benchmark()
def benchmark_8x16_tpu_bf16(self):
self._setup()
self._set_df_common()
FLAGS.batch_size = 8192
FLAGS.dtype = 'bf16'
self._run_and_report_benchmark()
def fill_report_object(self, stats):
super(Resnet50CtlBenchmarkBase, self).fill_report_object(
stats, total_batch_size=FLAGS.batch_size, log_steps=FLAGS.log_steps)
class Resnet50CtlBenchmarkSynth(Resnet50CtlBenchmarkBase):
"""Resnet50 synthetic benchmark tests."""
def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
def_flags = {}
def_flags['skip_eval'] = True
def_flags['use_synthetic_data'] = True
def_flags['train_steps'] = 110
def_flags['steps_per_loop'] = 20
def_flags['log_steps'] = 10
super(Resnet50CtlBenchmarkSynth, self).__init__(
output_dir=output_dir, default_flags=def_flags)
class Resnet50CtlBenchmarkReal(Resnet50CtlBenchmarkBase):
"""Resnet50 real data benchmark tests."""
def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
def_flags = {}
def_flags['skip_eval'] = True
def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
def_flags['train_steps'] = 110
def_flags['steps_per_loop'] = 20
def_flags['log_steps'] = 10
super(Resnet50CtlBenchmarkReal, self).__init__(
output_dir=output_dir, default_flags=def_flags)
if __name__ == '__main__':
tf.test.main()
|