File size: 8,866 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Common configuration settings."""
from typing import Optional, Union

import dataclasses

from official.modeling.hyperparams import base_config
from official.modeling.optimization.configs import optimization_config
from official.utils import registry

OptimizationConfig = optimization_config.OptimizationConfig


@dataclasses.dataclass
class DataConfig(base_config.Config):
  """The base configuration for building datasets.

  Attributes:
    input_path: The path to the input. It can be either (1) a file pattern, or
      (2) multiple file patterns separated by comma. It should not be specified
      when the following `tfds_name` is specified.
    tfds_name: The name of the tensorflow dataset (TFDS). It should not be
      specified when the above `input_path` is specified.
    tfds_split: A str indicating which split of the data to load from TFDS. It
      is required when above `tfds_name` is specified.
    global_batch_size: The global batch size across all replicas.
    is_training: Whether this data is used for training or not.
    drop_remainder: Whether the last batch should be dropped in the case it has
      fewer than `global_batch_size` elements.
    shuffle_buffer_size: The buffer size used for shuffling training data.
    cache: Whether to cache dataset examples. Can be used to avoid re-reading
      from disk on the second epoch. Requires significant memory overhead.
    cycle_length: The number of files that will be processed concurrently when
      interleaving files.
    block_length: The number of consecutive elements to produce from each input
      element before cycling to another input element when interleaving files.
    sharding: Whether sharding is used in the input pipeline.
    examples_consume: An `integer` specifying the number of examples it will
      produce. If positive, it only takes this number of examples and raises
      tf.error.OutOfRangeError after that. Default is -1, meaning it will
      exhaust all the examples in the dataset.
    tfds_data_dir: A str specifying the directory to read/write TFDS data.
    tfds_download: A bool to indicate whether to download data using TFDS.
    tfds_as_supervised: A bool. When loading dataset from TFDS, if True,
      the returned tf.data.Dataset will have a 2-tuple structure (input, label)
      according to builder.info.supervised_keys; if False, the default,
      the returned tf.data.Dataset will have a dictionary with all the features.
    tfds_skip_decoding_feature: A str to indicate which features are skipped
      for decoding when loading dataset from TFDS. Use comma to separate
      multiple features. The main use case is to skip the image/video decoding
      for better performance.
  """
  input_path: str = ""
  tfds_name: str = ""
  tfds_split: str = ""
  global_batch_size: int = 0
  is_training: bool = None
  drop_remainder: bool = True
  shuffle_buffer_size: int = 100
  cache: bool = False
  cycle_length: int = 8
  block_length: int = 1
  sharding: bool = True
  examples_consume: int = -1
  tfds_data_dir: str = ""
  tfds_download: bool = False
  tfds_as_supervised: bool = False
  tfds_skip_decoding_feature: str = ""


@dataclasses.dataclass
class RuntimeConfig(base_config.Config):
  """High-level configurations for Runtime.

  These include parameters that are not directly related to the experiment,
  e.g. directories, accelerator type, etc.

  Attributes:
    distribution_strategy: e.g. 'mirrored', 'tpu', etc.
    enable_xla: Whether or not to enable XLA.
    per_gpu_thread_count: thread count per GPU.
    gpu_thread_mode: Whether and how the GPU device uses its own threadpool.
    dataset_num_private_threads: Number of threads for a private threadpool
      created for all datasets computation.
    tpu: The address of the TPU to use, if any.
    num_gpus: The number of GPUs to use, if any.
    worker_hosts: comma-separated list of worker ip:port pairs for running
      multi-worker models with DistributionStrategy.
    task_index: If multi-worker training, the task index of this worker.
    all_reduce_alg: Defines the algorithm for performing all-reduce.
    num_packs: Sets `num_packs` in the cross device ops used in
      MirroredStrategy.  For details, see tf.distribute.NcclAllReduce.
    mixed_precision_dtype: dtype of mixed precision policy. It can be 'float32',
      'float16', or 'bfloat16'.
    loss_scale: The type of loss scale, or 'float' value. This is used when
      setting the mixed precision policy.
    run_eagerly: Whether or not to run the experiment eagerly.
    batchnorm_spatial_persistent: Whether or not to enable the spatial
      persistent mode for CuDNN batch norm kernel for improved GPU performance.
  """
  distribution_strategy: str = "mirrored"
  enable_xla: bool = False
  gpu_thread_mode: Optional[str] = None
  dataset_num_private_threads: Optional[int] = None
  per_gpu_thread_count: int = 0
  tpu: Optional[str] = None
  num_gpus: int = 0
  worker_hosts: Optional[str] = None
  task_index: int = -1
  all_reduce_alg: Optional[str] = None
  num_packs: int = 1
  loss_scale: Optional[Union[str, float]] = None
  mixed_precision_dtype: Optional[str] = None
  run_eagerly: bool = False
  batchnorm_spatial_persistent: bool = False


@dataclasses.dataclass
class TensorboardConfig(base_config.Config):
  """Configuration for Tensorboard.

  Attributes:
    track_lr: Whether or not to track the learning rate in Tensorboard. Defaults
      to True.
    write_model_weights: Whether or not to write the model weights as images in
      Tensorboard. Defaults to False.
  """
  track_lr: bool = True
  write_model_weights: bool = False


@dataclasses.dataclass
class CallbacksConfig(base_config.Config):
  """Configuration for Callbacks.

  Attributes:
    enable_checkpoint_and_export: Whether or not to enable checkpoints as a
      Callback. Defaults to True.
    enable_tensorboard: Whether or not to enable Tensorboard as a Callback.
      Defaults to True.
    enable_time_history: Whether or not to enable TimeHistory Callbacks.
      Defaults to True.
  """
  enable_checkpoint_and_export: bool = True
  enable_tensorboard: bool = True
  enable_time_history: bool = True


@dataclasses.dataclass
class TrainerConfig(base_config.Config):
  """Configuration for trainer.

  Attributes:
    optimizer_config: optimizer config, it includes optimizer, learning rate,
      and warmup schedule configs.
    train_tf_while_loop: whether or not to use tf while loop.
    train_tf_function: whether or not to use tf_function for training loop.
    eval_tf_function: whether or not to use tf_function for eval.
    steps_per_loop: number of steps per loop.
    summary_interval: number of steps between each summary.
    checkpoint_intervals: number of steps between checkpoints.
    max_to_keep: max checkpoints to keep.
    continuous_eval_timeout: maximum number of seconds to wait between
      checkpoints, if set to None, continuous eval will wait indefinetely.
  """
  optimizer_config: OptimizationConfig = OptimizationConfig()
  train_tf_while_loop: bool = True
  train_tf_function: bool = True
  eval_tf_function: bool = True
  steps_per_loop: int = 1000
  summary_interval: int = 1000
  checkpoint_interval: int = 1000
  max_to_keep: int = 5
  continuous_eval_timeout: Optional[int] = None


@dataclasses.dataclass
class TaskConfig(base_config.Config):
  network: base_config.Config = None
  train_data: DataConfig = DataConfig()
  validation_data: DataConfig = DataConfig()


@dataclasses.dataclass
class ExperimentConfig(base_config.Config):
  """Top-level configuration."""
  task: TaskConfig = TaskConfig()
  trainer: TrainerConfig = TrainerConfig()
  runtime: RuntimeConfig = RuntimeConfig()
  train_steps: int = 0
  validation_steps: Optional[int] = None
  validation_interval: int = 100


_REGISTERED_CONFIGS = {}


def register_config_factory(name):
  """Register ExperimentConfig factory method."""
  return registry.register(_REGISTERED_CONFIGS, name)


def get_exp_config_creater(exp_name: str):
  """Looks up ExperimentConfig factory methods."""
  exp_creater = registry.lookup(_REGISTERED_CONFIGS, exp_name)
  return exp_creater