File size: 4,901 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Multi-head BERT encoder network with classification heads.

Includes configurations and instantiation methods.
"""
from typing import List, Optional, Text

import dataclasses
import tensorflow as tf

from official.modeling import tf_utils
from official.modeling.hyperparams import base_config
from official.modeling.hyperparams import config_definitions as cfg
from official.nlp.configs import encoders
from official.nlp.modeling import layers
from official.nlp.modeling.models import bert_pretrainer


@dataclasses.dataclass
class ClsHeadConfig(base_config.Config):
  inner_dim: int = 0
  num_classes: int = 2
  activation: Optional[Text] = "tanh"
  dropout_rate: float = 0.0
  cls_token_idx: int = 0
  name: Optional[Text] = None


@dataclasses.dataclass
class BertPretrainerConfig(base_config.Config):
  """BERT encoder configuration."""
  num_masked_tokens: int = 76
  encoder: encoders.TransformerEncoderConfig = (
      encoders.TransformerEncoderConfig())
  cls_heads: List[ClsHeadConfig] = dataclasses.field(default_factory=list)


def instantiate_classification_heads_from_cfgs(
    cls_head_configs: List[ClsHeadConfig]) -> List[layers.ClassificationHead]:
  return [
      layers.ClassificationHead(**cfg.as_dict()) for cfg in cls_head_configs
    ] if cls_head_configs else []


def instantiate_bertpretrainer_from_cfg(
    config: BertPretrainerConfig,
    encoder_network: Optional[tf.keras.Model] = None
    ) -> bert_pretrainer.BertPretrainerV2:
  """Instantiates a BertPretrainer from the config."""
  encoder_cfg = config.encoder
  if encoder_network is None:
    encoder_network = encoders.instantiate_encoder_from_cfg(encoder_cfg)
  return bert_pretrainer.BertPretrainerV2(
      config.num_masked_tokens,
      mlm_activation=tf_utils.get_activation(encoder_cfg.hidden_activation),
      mlm_initializer=tf.keras.initializers.TruncatedNormal(
          stddev=encoder_cfg.initializer_range),
      encoder_network=encoder_network,
      classification_heads=instantiate_classification_heads_from_cfgs(
          config.cls_heads))


@dataclasses.dataclass
class BertPretrainDataConfig(cfg.DataConfig):
  """Data config for BERT pretraining task (tasks/masked_lm)."""
  input_path: str = ""
  global_batch_size: int = 512
  is_training: bool = True
  seq_length: int = 512
  max_predictions_per_seq: int = 76
  use_next_sentence_label: bool = True
  use_position_id: bool = False


@dataclasses.dataclass
class BertPretrainEvalDataConfig(BertPretrainDataConfig):
  """Data config for the eval set in BERT pretraining task (tasks/masked_lm)."""
  input_path: str = ""
  global_batch_size: int = 512
  is_training: bool = False


@dataclasses.dataclass
class SentencePredictionDataConfig(cfg.DataConfig):
  """Data config for sentence prediction task (tasks/sentence_prediction)."""
  input_path: str = ""
  global_batch_size: int = 32
  is_training: bool = True
  seq_length: int = 128


@dataclasses.dataclass
class SentencePredictionDevDataConfig(cfg.DataConfig):
  """Dev Data config for sentence prediction (tasks/sentence_prediction)."""
  input_path: str = ""
  global_batch_size: int = 32
  is_training: bool = False
  seq_length: int = 128
  drop_remainder: bool = False


@dataclasses.dataclass
class QADataConfig(cfg.DataConfig):
  """Data config for question answering task (tasks/question_answering)."""
  input_path: str = ""
  global_batch_size: int = 48
  is_training: bool = True
  seq_length: int = 384


@dataclasses.dataclass
class QADevDataConfig(cfg.DataConfig):
  """Dev Data config for queston answering (tasks/question_answering)."""
  input_path: str = ""
  global_batch_size: int = 48
  is_training: bool = False
  seq_length: int = 384
  drop_remainder: bool = False


@dataclasses.dataclass
class TaggingDataConfig(cfg.DataConfig):
  """Data config for tagging (tasks/tagging)."""
  input_path: str = ""
  global_batch_size: int = 48
  is_training: bool = True
  seq_length: int = 384


@dataclasses.dataclass
class TaggingDevDataConfig(cfg.DataConfig):
  """Dev Data config for tagging (tasks/tagging)."""
  input_path: str = ""
  global_batch_size: int = 48
  is_training: bool = False
  seq_length: int = 384
  drop_remainder: bool = False