Spaces:
Building
Building
File size: 12,315 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT finetuning task dataset generator."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import json
import os
from absl import app
from absl import flags
import tensorflow as tf
from official.nlp.bert import tokenization
from official.nlp.data import classifier_data_lib
from official.nlp.data import sentence_retrieval_lib
# word-piece tokenizer based squad_lib
from official.nlp.data import squad_lib as squad_lib_wp
# sentence-piece tokenizer based squad_lib
from official.nlp.data import squad_lib_sp
FLAGS = flags.FLAGS
flags.DEFINE_enum(
"fine_tuning_task_type", "classification",
["classification", "regression", "squad", "retrieval"],
"The name of the BERT fine tuning task for which data "
"will be generated..")
# BERT classification specific flags.
flags.DEFINE_string(
"input_data_dir", None,
"The input data dir. Should contain the .tsv files (or other data files) "
"for the task.")
flags.DEFINE_enum("classification_task_name", "MNLI",
["COLA", "MNLI", "MRPC", "QNLI", "QQP", "SST-2", "XNLI",
"PAWS-X", "XTREME-XNLI", "XTREME-PAWS-X"],
"The name of the task to train BERT classifier. The "
"difference between XTREME-XNLI and XNLI is: 1. the format "
"of input tsv files; 2. the dev set for XTREME is english "
"only and for XNLI is all languages combined. Same for "
"PAWS-X.")
flags.DEFINE_enum("retrieval_task_name", "bucc", ["bucc", "tatoeba"],
"The name of sentence retrieval task for scoring")
# XNLI task specific flag.
flags.DEFINE_string(
"xnli_language", "en",
"Language of training data for XNIL task. If the value is 'all', the data "
"of all languages will be used for training.")
# PAWS-X task specific flag.
flags.DEFINE_string(
"pawsx_language", "en",
"Language of trainig data for PAWS-X task. If the value is 'all', the data "
"of all languages will be used for training.")
# BERT Squad task specific flags.
flags.DEFINE_string(
"squad_data_file", None,
"The input data file in for generating training data for BERT squad task.")
flags.DEFINE_integer(
"doc_stride", 128,
"When splitting up a long document into chunks, how much stride to "
"take between chunks.")
flags.DEFINE_integer(
"max_query_length", 64,
"The maximum number of tokens for the question. Questions longer than "
"this will be truncated to this length.")
flags.DEFINE_bool(
"version_2_with_negative", False,
"If true, the SQuAD examples contain some that do not have an answer.")
# Shared flags across BERT fine-tuning tasks.
flags.DEFINE_string("vocab_file", None,
"The vocabulary file that the BERT model was trained on.")
flags.DEFINE_string(
"train_data_output_path", None,
"The path in which generated training input data will be written as tf"
" records.")
flags.DEFINE_string(
"eval_data_output_path", None,
"The path in which generated evaluation input data will be written as tf"
" records.")
flags.DEFINE_string(
"test_data_output_path", None,
"The path in which generated test input data will be written as tf"
" records. If None, do not generate test data. Must be a pattern template"
" as test_{}.tfrecords if processor has language specific test data.")
flags.DEFINE_string("meta_data_file_path", None,
"The path in which input meta data will be written.")
flags.DEFINE_bool(
"do_lower_case", True,
"Whether to lower case the input text. Should be True for uncased "
"models and False for cased models.")
flags.DEFINE_integer(
"max_seq_length", 128,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded.")
flags.DEFINE_string("sp_model_file", "",
"The path to the model used by sentence piece tokenizer.")
flags.DEFINE_enum(
"tokenizer_impl", "word_piece", ["word_piece", "sentence_piece"],
"Specifies the tokenizer implementation, i.e., whehter to use word_piece "
"or sentence_piece tokenizer. Canonical BERT uses word_piece tokenizer, "
"while ALBERT uses sentence_piece tokenizer.")
flags.DEFINE_string("tfds_params", "",
"Comma-separated list of TFDS parameter assigments for "
"generic classfication data import (for more details "
"see the TfdsProcessor class documentation).")
def generate_classifier_dataset():
"""Generates classifier dataset and returns input meta data."""
assert (FLAGS.input_data_dir and FLAGS.classification_task_name
or FLAGS.tfds_params)
if FLAGS.tokenizer_impl == "word_piece":
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
processor_text_fn = tokenization.convert_to_unicode
else:
assert FLAGS.tokenizer_impl == "sentence_piece"
tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
processor_text_fn = functools.partial(
tokenization.preprocess_text, lower=FLAGS.do_lower_case)
if FLAGS.tfds_params:
processor = classifier_data_lib.TfdsProcessor(
tfds_params=FLAGS.tfds_params,
process_text_fn=processor_text_fn)
return classifier_data_lib.generate_tf_record_from_data_file(
processor,
None,
tokenizer,
train_data_output_path=FLAGS.train_data_output_path,
eval_data_output_path=FLAGS.eval_data_output_path,
test_data_output_path=FLAGS.test_data_output_path,
max_seq_length=FLAGS.max_seq_length)
else:
processors = {
"cola":
classifier_data_lib.ColaProcessor,
"mnli":
classifier_data_lib.MnliProcessor,
"mrpc":
classifier_data_lib.MrpcProcessor,
"qnli":
classifier_data_lib.QnliProcessor,
"qqp": classifier_data_lib.QqpProcessor,
"rte": classifier_data_lib.RteProcessor,
"sst-2":
classifier_data_lib.SstProcessor,
"xnli":
functools.partial(classifier_data_lib.XnliProcessor,
language=FLAGS.xnli_language),
"paws-x":
functools.partial(classifier_data_lib.PawsxProcessor,
language=FLAGS.pawsx_language),
"xtreme-xnli":
functools.partial(classifier_data_lib.XtremeXnliProcessor),
"xtreme-paws-x":
functools.partial(classifier_data_lib.XtremePawsxProcessor)
}
task_name = FLAGS.classification_task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name](process_text_fn=processor_text_fn)
return classifier_data_lib.generate_tf_record_from_data_file(
processor,
FLAGS.input_data_dir,
tokenizer,
train_data_output_path=FLAGS.train_data_output_path,
eval_data_output_path=FLAGS.eval_data_output_path,
test_data_output_path=FLAGS.test_data_output_path,
max_seq_length=FLAGS.max_seq_length)
def generate_regression_dataset():
"""Generates regression dataset and returns input meta data."""
if FLAGS.tokenizer_impl == "word_piece":
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
processor_text_fn = tokenization.convert_to_unicode
else:
assert FLAGS.tokenizer_impl == "sentence_piece"
tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
processor_text_fn = functools.partial(
tokenization.preprocess_text, lower=FLAGS.do_lower_case)
if FLAGS.tfds_params:
processor = classifier_data_lib.TfdsProcessor(
tfds_params=FLAGS.tfds_params,
process_text_fn=processor_text_fn)
return classifier_data_lib.generate_tf_record_from_data_file(
processor,
None,
tokenizer,
train_data_output_path=FLAGS.train_data_output_path,
eval_data_output_path=FLAGS.eval_data_output_path,
test_data_output_path=FLAGS.test_data_output_path,
max_seq_length=FLAGS.max_seq_length)
else:
raise ValueError("No data processor found for the given regression task.")
def generate_squad_dataset():
"""Generates squad training dataset and returns input meta data."""
assert FLAGS.squad_data_file
if FLAGS.tokenizer_impl == "word_piece":
return squad_lib_wp.generate_tf_record_from_json_file(
FLAGS.squad_data_file, FLAGS.vocab_file, FLAGS.train_data_output_path,
FLAGS.max_seq_length, FLAGS.do_lower_case, FLAGS.max_query_length,
FLAGS.doc_stride, FLAGS.version_2_with_negative)
else:
assert FLAGS.tokenizer_impl == "sentence_piece"
return squad_lib_sp.generate_tf_record_from_json_file(
FLAGS.squad_data_file, FLAGS.sp_model_file,
FLAGS.train_data_output_path, FLAGS.max_seq_length, FLAGS.do_lower_case,
FLAGS.max_query_length, FLAGS.doc_stride, FLAGS.version_2_with_negative)
def generate_retrieval_dataset():
"""Generate retrieval test and dev dataset and returns input meta data."""
assert (FLAGS.input_data_dir and FLAGS.retrieval_task_name)
if FLAGS.tokenizer_impl == "word_piece":
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
processor_text_fn = tokenization.convert_to_unicode
else:
assert FLAGS.tokenizer_impl == "sentence_piece"
tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
processor_text_fn = functools.partial(
tokenization.preprocess_text, lower=FLAGS.do_lower_case)
processors = {
"bucc": sentence_retrieval_lib.BuccProcessor,
"tatoeba": sentence_retrieval_lib.TatoebaProcessor,
}
task_name = FLAGS.retrieval_task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % task_name)
processor = processors[task_name](process_text_fn=processor_text_fn)
return sentence_retrieval_lib.generate_sentence_retrevial_tf_record(
processor,
FLAGS.input_data_dir,
tokenizer,
FLAGS.eval_data_output_path,
FLAGS.test_data_output_path,
FLAGS.max_seq_length)
def main(_):
if FLAGS.tokenizer_impl == "word_piece":
if not FLAGS.vocab_file:
raise ValueError(
"FLAG vocab_file for word-piece tokenizer is not specified.")
else:
assert FLAGS.tokenizer_impl == "sentence_piece"
if not FLAGS.sp_model_file:
raise ValueError(
"FLAG sp_model_file for sentence-piece tokenizer is not specified.")
if FLAGS.fine_tuning_task_type != "retrieval":
flags.mark_flag_as_required("train_data_output_path")
if FLAGS.fine_tuning_task_type == "classification":
input_meta_data = generate_classifier_dataset()
elif FLAGS.fine_tuning_task_type == "regression":
input_meta_data = generate_regression_dataset()
elif FLAGS.fine_tuning_task_type == "retrieval":
input_meta_data = generate_retrieval_dataset()
else:
input_meta_data = generate_squad_dataset()
tf.io.gfile.makedirs(os.path.dirname(FLAGS.meta_data_file_path))
with tf.io.gfile.GFile(FLAGS.meta_data_file_path, "w") as writer:
writer.write(json.dumps(input_meta_data, indent=4) + "\n")
if __name__ == "__main__":
flags.mark_flag_as_required("meta_data_file_path")
app.run(main)
|