File size: 8,198 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras-based positional embedding layer."""
# pylint: disable=g-classes-have-attributes
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

import math

import tensorflow as tf

from official.modeling import tf_utils


@tf.keras.utils.register_keras_serializable(package="Text")
class PositionEmbedding(tf.keras.layers.Layer):
  """Creates a positional embedding.

  This layer creates a positional embedding as described in "BERT: Pre-training
  of Deep Bidirectional Transformers for Language Understanding"
  (https://arxiv.org/abs/1810.04805).

  This layer can be set up to either create a statically shaped slice or a
  dynamically shaped slice. If `use_dynamic_slicing` is True, the input tensor
  can have a dynamic 1st dimension, while if `use_dynamic_slicing` is False the
  input size must be fixed.

  Arguments:
    use_dynamic_slicing: Whether to use the dynamic slicing path.
    max_sequence_length: The maximum size of the dynamic sequence. Only
      applicable if `use_dynamic_slicing` is True.
    initializer: The initializer to use for the embedding weights. Defaults to
      "glorot_uniform".
  """

  def __init__(self,
               initializer="glorot_uniform",
               use_dynamic_slicing=False,
               max_sequence_length=None,
               **kwargs):
    # We need to have a default dtype of float32, since the inputs (which Keras
    # usually uses to infer the dtype) will always be int32.
    if "dtype" not in kwargs:
      kwargs["dtype"] = "float32"

    super(PositionEmbedding, self).__init__(**kwargs)
    if use_dynamic_slicing and max_sequence_length is None:
      raise ValueError(
          "If `use_dynamic_slicing` is True, `max_sequence_length` must be set."
      )
    self._max_sequence_length = max_sequence_length
    self._initializer = tf.keras.initializers.get(initializer)
    self._use_dynamic_slicing = use_dynamic_slicing

  def get_config(self):
    config = {
        "max_sequence_length": self._max_sequence_length,
        "initializer": tf.keras.initializers.serialize(self._initializer),
        "use_dynamic_slicing": self._use_dynamic_slicing,
    }
    base_config = super(PositionEmbedding, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def build(self, input_shape):
    """Implements build() for the layer."""
    dimension_list = input_shape.as_list()

    if len(dimension_list) != 3:
      raise ValueError("PositionEmbedding expects a 3-dimensional input tensor "
                       "of shape [batch, sequence, width]")
    seq_length = dimension_list[1]
    width = dimension_list[2]

    # If we are not using dynamic slicing, we must assume that the sequence
    # length is fixed and max_sequence_length should not be specified.
    if not self._use_dynamic_slicing:
      if seq_length is None:
        raise ValueError(
            "PositionEmbedding must have `use_dynamic_slicing` set "
            "to True (and max_sequence_length set) when the "
            "sequence (1st) dimension of the input is None.")
      if self._max_sequence_length is not None:
        raise ValueError(
            "When `use_dynamic_slicing` is False, max_sequence_length should "
            "not be specified and we ought to use seq_length to get the "
            "variable shape.")

    if self._max_sequence_length is not None:
      weight_sequence_length = self._max_sequence_length
    else:
      weight_sequence_length = seq_length

    self._position_embeddings = self.add_weight(
        "embeddings",
        shape=[weight_sequence_length, width],
        initializer=self._initializer)

    super(PositionEmbedding, self).build(input_shape)

  def call(self, inputs):
    """Implements call() for the layer."""
    input_shape = tf_utils.get_shape_list(inputs, expected_rank=3)
    if self._use_dynamic_slicing:
      position_embeddings = self._position_embeddings[:input_shape[1], :]
    else:
      position_embeddings = self._position_embeddings

    return tf.broadcast_to(position_embeddings, input_shape)


@tf.keras.utils.register_keras_serializable(package="Text")
class RelativePositionEmbedding(tf.keras.layers.Layer):
  """Creates a positional embedding.

  This layer calculates the position encoding as a mix of sine and cosine
  functions with geometrically increasing wavelengths. Defined and formulized in
   "Attention is All You Need", section 3.5.
  (https://arxiv.org/abs/1706.03762).

  Arguments:
    hidden_size: Size of the hidden layer.
    min_timescale: Minimum scale that will be applied at each position
    max_timescale: Maximum scale that will be applied at each position.
  """

  def __init__(self,
               hidden_size,
               min_timescale=1.0,
               max_timescale=1.0e4,
               **kwargs):
    # We need to have a default dtype of float32, since the inputs (which Keras
    # usually uses to infer the dtype) will always be int32.
    # We compute the positional encoding in float32 even if the model uses
    # float16, as many of the ops used, like log and exp, are numerically
    # unstable in float16.
    if "dtype" not in kwargs:
      kwargs["dtype"] = "float32"

    super(RelativePositionEmbedding, self).__init__(**kwargs)
    self._hidden_size = hidden_size
    self._min_timescale = min_timescale
    self._max_timescale = max_timescale

  def get_config(self):
    config = {
        "hidden_size": self._hidden_size,
        "min_timescale": self._min_timescale,
        "max_timescale": self._max_timescale,
        "length": self._length,
    }
    base_config = super(RelativePositionEmbedding, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self, inputs, length=None):
    """Implements call() for the layer.

    Args:
      inputs: An tensor whose second dimension will be used as `length`. If
        `None`, the other `length` argument must be specified.
      length: An optional integer specifying the number of positions. If both
        `inputs` and `length` are spcified, `length` must be equal to the
        second dimension of `inputs`.

    Returns:
      A tensor in shape of [length, hidden_size].
    """
    if inputs is None and length is None:
      raise ValueError(
          "If inputs is None, `length` must be set in "
          "RelativePositionEmbedding().")
    if inputs is not None:
      input_shape = tf_utils.get_shape_list(inputs)
      if length is not None and length != input_shape[1]:
        raise ValueError(
            "If inputs is not None, `length` must equal to input_shape[1]."
        )
      length = input_shape[1]
    position = tf.cast(tf.range(length), tf.float32)
    num_timescales = self._hidden_size // 2
    min_timescale, max_timescale = self._min_timescale, self._max_timescale
    log_timescale_increment = (
        math.log(float(max_timescale) / float(min_timescale)) /
        (tf.cast(num_timescales, tf.float32) - 1))
    inv_timescales = min_timescale * tf.exp(
        tf.cast(tf.range(num_timescales), tf.float32) *
        -log_timescale_increment)
    scaled_time = tf.expand_dims(position, 1) * tf.expand_dims(inv_timescales,
                                                               0)
    position_embeddings = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)],
                                    axis=1)
    return position_embeddings