File size: 6,329 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Evaluation for Bert2Bert."""
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function
import os
from absl import logging
import numpy as np
import tensorflow as tf
from official.nlp.nhnet import input_pipeline
from official.nlp.nhnet import models
from official.nlp.transformer import metrics as metrics_v2
from official.nlp.transformer.utils import metrics
def rouge_l_fscore(logits, labels):
"""ROUGE scores computation between labels and predictions.
This is an approximate ROUGE scoring method since we do not glue word pieces
or decode the ids and tokenize the output.
Args:
logits: tensor, model predictions
labels: tensor, gold output.
Returns:
rouge_l_fscore: approx rouge-l f1 score.
"""
predictions = np.argmax(logits, axis=-1)
rouge_l_f_score = metrics.rouge_l_sentence_level(predictions, labels)
return rouge_l_f_score
def rouge_2_fscore(logits, labels):
"""ROUGE-2 F1 score computation between labels and predictions.
This is an approximate ROUGE scoring method since we do not glue word pieces
or decode the ids and tokenize the output.
Args:
logits: tensor, model predictions
labels: tensor, gold output.
Returns:
rouge2_fscore: approx rouge-2 f1 score.
"""
predictions = np.argmax(logits, axis=-1)
rouge_2_f_score = metrics.rouge_n(predictions, labels)
return rouge_2_f_score
def bleu_score(logits, labels):
"""Approximate BLEU score computation between labels and predictions.
An approximate BLEU scoring method since we do not glue word pieces or
decode the ids and tokenize the output. By default, we use ngram order of 4
and use brevity penalty. Also, this does not have beam search.
Args:
logits: Tensor of size [batch_size, length_logits, vocab_size]
labels: Tensor of size [batch-size, length_labels]
Returns:
bleu: int, approx bleu score
"""
predictions = np.argmax(logits, axis=-1)
bleu = metrics.compute_bleu(labels, predictions)
return bleu
def continuous_eval(strategy,
params,
model_type,
eval_file_pattern=None,
batch_size=4,
eval_steps=None,
model_dir=None,
timeout=3000):
"""Continuously evaluate checkpoints on testing data."""
test_dataset = input_pipeline.get_input_dataset(
eval_file_pattern,
batch_size=batch_size,
params=params,
is_training=False,
strategy=strategy)
with strategy.scope():
model = models.create_model(model_type, params)
metric_layer = metrics_v2.MetricLayer(params.vocab_size)
eval_summary_writer = tf.summary.create_file_writer(
os.path.join(model_dir, "summaries/eval"))
global_step = tf.Variable(
0,
trainable=False,
dtype=tf.int64,
aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA,
shape=[])
model.global_step = global_step
@tf.function
def test_step(inputs):
"""Calculates evaluation metrics on distributed devices."""
def _test_step_fn(inputs):
"""Replicated accuracy calculation."""
targets = models.remove_sos_from_seq(inputs["target_ids"],
params.pad_token_id)
# Using ground truth sequences as targets to calculate logits for accuracy
# and perplexity metrics.
logits, _, _ = model(inputs, training=False, mode="train")
metric_layer([logits, targets])
# Get logits from top beam search results for bleu and rouge metrics.
logits = model(inputs, training=False, mode="eval")
return targets, logits
outputs = strategy.run(_test_step_fn, args=(inputs,))
return tf.nest.map_structure(strategy.experimental_local_results, outputs)
metrics_and_funcs = [
(tf.keras.metrics.Mean("bleu", dtype=tf.float32), bleu_score),
(tf.keras.metrics.Mean("rouge_2_fscore",
dtype=tf.float32), rouge_2_fscore),
(tf.keras.metrics.Mean("rouge_l_fscore",
dtype=tf.float32), rouge_l_fscore),
]
eval_results = {}
for latest_checkpoint in tf.train.checkpoints_iterator(
model_dir, timeout=timeout):
checkpoint = tf.train.Checkpoint(model=model)
checkpoint.restore(latest_checkpoint).expect_partial()
logging.info("Loaded checkpoint %s", latest_checkpoint)
for i, inputs in enumerate(test_dataset):
if eval_steps and i >= eval_steps:
break
outputs = test_step(inputs)
for metric, func in metrics_and_funcs:
for targets, logits in zip(outputs[0], outputs[1]):
metric.update_state(func(logits.numpy(), targets.numpy()))
with eval_summary_writer.as_default():
step = model.global_step.numpy()
for metric, _ in metrics_and_funcs:
eval_results[metric.name] = metric.result().numpy().astype(float)
tf.summary.scalar(
metric.name,
eval_results[metric.name],
step=step)
for metric in metric_layer.metrics:
eval_results[metric.name] = metric.result().numpy().astype(float)
tf.summary.scalar(
metric.name,
eval_results[metric.name],
step=step)
logging.info("Step %d Metrics= %s", step, str(eval_results))
eval_summary_writer.flush()
# Resets metrics.
for metric, _ in metrics_and_funcs:
metric.reset_states()
for metric in metric_layer.metrics:
metric.reset_states()
return eval_results
|