File size: 11,833 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for nlp.nhnet.models."""
import os
from absl import logging
from absl.testing import parameterized
import numpy as np
import tensorflow as tf
# pylint: disable=g-direct-tensorflow-import
from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
# pylint: enable=g-direct-tensorflow-import
from official.nlp.nhnet import configs
from official.nlp.nhnet import models
from official.nlp.nhnet import utils
def all_strategy_combinations():
return combinations.combine(
distribution=[
strategy_combinations.default_strategy,
strategy_combinations.tpu_strategy,
strategy_combinations.one_device_strategy_gpu,
strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
strategy_combinations.mirrored_strategy_with_two_gpus,
],
mode="eager",
)
def distribution_forward_path(strategy,
model,
inputs,
batch_size,
mode="train"):
dataset = tf.data.Dataset.from_tensor_slices((inputs))
dataset = dataset.batch(batch_size)
dataset = strategy.experimental_distribute_dataset(dataset)
@tf.function
def test_step(inputs):
"""Calculates evaluation metrics on distributed devices."""
def _test_step_fn(inputs):
"""Replicated accuracy calculation."""
return model(inputs, mode=mode, training=False)
outputs = strategy.run(_test_step_fn, args=(inputs,))
return tf.nest.map_structure(strategy.experimental_local_results, outputs)
return [test_step(inputs) for inputs in dataset]
def process_decoded_ids(predictions, end_token_id):
"""Transforms decoded tensors to lists ending with END_TOKEN_ID."""
if isinstance(predictions, tf.Tensor):
predictions = predictions.numpy()
flatten_ids = predictions.reshape((-1, predictions.shape[-1]))
results = []
for ids in flatten_ids:
ids = list(ids)
if end_token_id in ids:
ids = ids[:ids.index(end_token_id)]
results.append(ids)
return results
class Bert2BertTest(tf.test.TestCase, parameterized.TestCase):
def setUp(self):
super(Bert2BertTest, self).setUp()
self._config = utils.get_test_params()
def test_model_creation(self):
model = models.create_bert2bert_model(params=self._config)
fake_ids = np.zeros((2, 10), dtype=np.int32)
fake_inputs = {
"input_ids": fake_ids,
"input_mask": fake_ids,
"segment_ids": fake_ids,
"target_ids": fake_ids,
}
model(fake_inputs)
@combinations.generate(all_strategy_combinations())
def test_bert2bert_train_forward(self, distribution):
seq_length = 10
# Defines the model inside distribution strategy scope.
with distribution.scope():
# Forward path.
batch_size = 2
batches = 4
fake_ids = np.zeros((batch_size * batches, seq_length), dtype=np.int32)
fake_inputs = {
"input_ids": fake_ids,
"input_mask": fake_ids,
"segment_ids": fake_ids,
"target_ids": fake_ids,
}
model = models.create_bert2bert_model(params=self._config)
results = distribution_forward_path(distribution, model, fake_inputs,
batch_size)
logging.info("Forward path results: %s", str(results))
self.assertLen(results, batches)
def test_bert2bert_decoding(self):
seq_length = 10
self._config.override(
{
"beam_size": 3,
"len_title": seq_length,
"alpha": 0.6,
},
is_strict=False)
batch_size = 2
fake_ids = np.zeros((batch_size, seq_length), dtype=np.int32)
fake_inputs = {
"input_ids": fake_ids,
"input_mask": fake_ids,
"segment_ids": fake_ids,
}
self._config.override({
"padded_decode": False,
"use_cache": False,
},
is_strict=False)
model = models.create_bert2bert_model(params=self._config)
ckpt = tf.train.Checkpoint(model=model)
# Initializes variables from checkpoint to keep outputs deterministic.
init_checkpoint = ckpt.save(os.path.join(self.get_temp_dir(), "ckpt"))
ckpt.restore(init_checkpoint).assert_existing_objects_matched()
top_ids, scores = model(fake_inputs, mode="predict")
self._config.override({
"padded_decode": False,
"use_cache": True,
},
is_strict=False)
model = models.create_bert2bert_model(params=self._config)
ckpt = tf.train.Checkpoint(model=model)
ckpt.restore(init_checkpoint).assert_existing_objects_matched()
cached_top_ids, cached_scores = model(fake_inputs, mode="predict")
self.assertEqual(
process_decoded_ids(top_ids, self._config.end_token_id),
process_decoded_ids(cached_top_ids, self._config.end_token_id))
self.assertAllClose(scores, cached_scores)
self._config.override({
"padded_decode": True,
"use_cache": True,
},
is_strict=False)
model = models.create_bert2bert_model(params=self._config)
ckpt = tf.train.Checkpoint(model=model)
ckpt.restore(init_checkpoint).assert_existing_objects_matched()
padded_top_ids, padded_scores = model(fake_inputs, mode="predict")
self.assertEqual(
process_decoded_ids(top_ids, self._config.end_token_id),
process_decoded_ids(padded_top_ids, self._config.end_token_id))
self.assertAllClose(scores, padded_scores)
@combinations.generate(all_strategy_combinations())
def test_bert2bert_eval(self, distribution):
seq_length = 10
padded_decode = isinstance(distribution,
tf.distribute.experimental.TPUStrategy)
self._config.override(
{
"beam_size": 3,
"len_title": seq_length,
"alpha": 0.6,
"padded_decode": padded_decode,
},
is_strict=False)
# Defines the model inside distribution strategy scope.
with distribution.scope():
# Forward path.
batch_size = 2
batches = 4
fake_ids = np.zeros((batch_size * batches, seq_length), dtype=np.int32)
fake_inputs = {
"input_ids": fake_ids,
"input_mask": fake_ids,
"segment_ids": fake_ids,
}
model = models.create_bert2bert_model(params=self._config)
results = distribution_forward_path(
distribution, model, fake_inputs, batch_size, mode="predict")
self.assertLen(results, batches)
results = distribution_forward_path(
distribution, model, fake_inputs, batch_size, mode="eval")
self.assertLen(results, batches)
class NHNetTest(tf.test.TestCase, parameterized.TestCase):
def setUp(self):
super(NHNetTest, self).setUp()
self._nhnet_config = configs.NHNetConfig()
self._nhnet_config.override(utils.get_test_params().as_dict())
self._bert2bert_config = configs.BERT2BERTConfig()
self._bert2bert_config.override(utils.get_test_params().as_dict())
def _count_params(self, layer, trainable_only=True):
"""Returns the count of all model parameters, or just trainable ones."""
if not trainable_only:
return layer.count_params()
else:
return int(
np.sum([
tf.keras.backend.count_params(p) for p in layer.trainable_weights
]))
def test_create_nhnet_layers(self):
single_doc_bert, single_doc_decoder = models.get_bert2bert_layers(
self._bert2bert_config)
multi_doc_bert, multi_doc_decoder = models.get_nhnet_layers(
self._nhnet_config)
# Expects multi-doc encoder/decoder have the same number of parameters as
# single-doc encoder/decoder.
self.assertEqual(
self._count_params(multi_doc_bert), self._count_params(single_doc_bert))
self.assertEqual(
self._count_params(multi_doc_decoder),
self._count_params(single_doc_decoder))
def test_checkpoint_restore(self):
bert2bert_model = models.create_bert2bert_model(self._bert2bert_config)
ckpt = tf.train.Checkpoint(model=bert2bert_model)
init_checkpoint = ckpt.save(os.path.join(self.get_temp_dir(), "ckpt"))
nhnet_model = models.create_nhnet_model(
params=self._nhnet_config, init_checkpoint=init_checkpoint)
source_weights = (
bert2bert_model.bert_layer.trainable_weights +
bert2bert_model.decoder_layer.trainable_weights)
dest_weights = (
nhnet_model.bert_layer.trainable_weights +
nhnet_model.decoder_layer.trainable_weights)
for source_weight, dest_weight in zip(source_weights, dest_weights):
self.assertAllClose(source_weight.numpy(), dest_weight.numpy())
@combinations.generate(all_strategy_combinations())
def test_nhnet_train_forward(self, distribution):
seq_length = 10
# Defines the model inside distribution strategy scope.
with distribution.scope():
# Forward path.
batch_size = 2
num_docs = 2
batches = 4
fake_ids = np.zeros((batch_size * batches, num_docs, seq_length),
dtype=np.int32)
fake_inputs = {
"input_ids":
fake_ids,
"input_mask":
fake_ids,
"segment_ids":
fake_ids,
"target_ids":
np.zeros((batch_size * batches, seq_length * 2), dtype=np.int32),
}
model = models.create_nhnet_model(params=self._nhnet_config)
results = distribution_forward_path(distribution, model, fake_inputs,
batch_size)
logging.info("Forward path results: %s", str(results))
self.assertLen(results, batches)
@combinations.generate(all_strategy_combinations())
def test_nhnet_eval(self, distribution):
seq_length = 10
padded_decode = isinstance(distribution,
tf.distribute.experimental.TPUStrategy)
self._nhnet_config.override(
{
"beam_size": 4,
"len_title": seq_length,
"alpha": 0.6,
"multi_channel_cross_attention": True,
"padded_decode": padded_decode,
},
is_strict=False)
# Defines the model inside distribution strategy scope.
with distribution.scope():
# Forward path.
batch_size = 2
num_docs = 2
batches = 4
fake_ids = np.zeros((batch_size * batches, num_docs, seq_length),
dtype=np.int32)
fake_inputs = {
"input_ids": fake_ids,
"input_mask": fake_ids,
"segment_ids": fake_ids,
"target_ids": np.zeros((batch_size * batches, 5), dtype=np.int32),
}
model = models.create_nhnet_model(params=self._nhnet_config)
results = distribution_forward_path(
distribution, model, fake_inputs, batch_size, mode="predict")
self.assertLen(results, batches)
results = distribution_forward_path(
distribution, model, fake_inputs, batch_size, mode="eval")
self.assertLen(results, batches)
if __name__ == "__main__":
tf.test.main()
|