File size: 12,763 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Anchor box and labeler definition."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import tensorflow as tf
from official.vision.detection.utils.object_detection import argmax_matcher
from official.vision.detection.utils.object_detection import balanced_positive_negative_sampler
from official.vision.detection.utils.object_detection import box_list
from official.vision.detection.utils.object_detection import faster_rcnn_box_coder
from official.vision.detection.utils.object_detection import region_similarity_calculator
from official.vision.detection.utils.object_detection import target_assigner


class Anchor(object):
  """Anchor class for anchor-based object detectors."""

  def __init__(self,
               min_level,
               max_level,
               num_scales,
               aspect_ratios,
               anchor_size,
               image_size):
    """Constructs multiscale anchors.

    Args:
      min_level: integer number of minimum level of the output feature pyramid.
      max_level: integer number of maximum level of the output feature pyramid.
      num_scales: integer number representing intermediate scales added
        on each level. For instances, num_scales=2 adds one additional
        intermediate anchor scales [2^0, 2^0.5] on each level.
      aspect_ratios: list of float numbers representing the aspect raito anchors
        added on each level. The number indicates the ratio of width to height.
        For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors on each
        scale level.
      anchor_size: float number representing the scale of size of the base
        anchor to the feature stride 2^level.
      image_size: a list of integer numbers or Tensors representing
        [height, width] of the input image size.The image_size should be divided
        by the largest feature stride 2^max_level.
    """
    self.min_level = min_level
    self.max_level = max_level
    self.num_scales = num_scales
    self.aspect_ratios = aspect_ratios
    self.anchor_size = anchor_size
    self.image_size = image_size
    self.boxes = self._generate_boxes()

  def _generate_boxes(self):
    """Generates multiscale anchor boxes.

    Returns:
      a Tensor of shape [N, 4], represneting anchor boxes of all levels
      concatenated together.
    """
    boxes_all = []
    for level in range(self.min_level, self.max_level + 1):
      boxes_l = []
      for scale in range(self.num_scales):
        for aspect_ratio in self.aspect_ratios:
          stride = 2 ** level
          intermidate_scale = 2 ** (scale / float(self.num_scales))
          base_anchor_size = self.anchor_size * stride * intermidate_scale
          aspect_x = aspect_ratio ** 0.5
          aspect_y = aspect_ratio ** -0.5
          half_anchor_size_x = base_anchor_size * aspect_x / 2.0
          half_anchor_size_y = base_anchor_size * aspect_y / 2.0
          x = tf.range(stride / 2, self.image_size[1], stride)
          y = tf.range(stride / 2, self.image_size[0], stride)
          xv, yv = tf.meshgrid(x, y)
          xv = tf.cast(tf.reshape(xv, [-1]), dtype=tf.float32)
          yv = tf.cast(tf.reshape(yv, [-1]), dtype=tf.float32)
          # Tensor shape Nx4.
          boxes = tf.stack([yv - half_anchor_size_y, xv - half_anchor_size_x,
                            yv + half_anchor_size_y, xv + half_anchor_size_x],
                           axis=1)
          boxes_l.append(boxes)
      # Concat anchors on the same level to tensor shape NxAx4.
      boxes_l = tf.stack(boxes_l, axis=1)
      boxes_l = tf.reshape(boxes_l, [-1, 4])
      boxes_all.append(boxes_l)
    return tf.concat(boxes_all, axis=0)

  def unpack_labels(self, labels):
    """Unpacks an array of labels into multiscales labels."""
    unpacked_labels = collections.OrderedDict()
    count = 0
    for level in range(self.min_level, self.max_level + 1):
      feat_size_y = tf.cast(self.image_size[0] / 2 ** level, tf.int32)
      feat_size_x = tf.cast(self.image_size[1] / 2 ** level, tf.int32)
      steps = feat_size_y * feat_size_x * self.anchors_per_location
      unpacked_labels[level] = tf.reshape(
          labels[count:count + steps], [feat_size_y, feat_size_x, -1])
      count += steps
    return unpacked_labels

  @property
  def anchors_per_location(self):
    return self.num_scales * len(self.aspect_ratios)

  @property
  def multilevel_boxes(self):
    return self.unpack_labels(self.boxes)


class AnchorLabeler(object):
  """Labeler for dense object detector."""

  def __init__(self,
               anchor,
               match_threshold=0.5,
               unmatched_threshold=0.5):
    """Constructs anchor labeler to assign labels to anchors.

    Args:
      anchor: an instance of class Anchors.
      match_threshold: a float number between 0 and 1 representing the
        lower-bound threshold to assign positive labels for anchors. An anchor
        with a score over the threshold is labeled positive.
      unmatched_threshold: a float number between 0 and 1 representing the
        upper-bound threshold to assign negative labels for anchors. An anchor
        with a score below the threshold is labeled negative.
    """
    similarity_calc = region_similarity_calculator.IouSimilarity()
    matcher = argmax_matcher.ArgMaxMatcher(
        match_threshold,
        unmatched_threshold=unmatched_threshold,
        negatives_lower_than_unmatched=True,
        force_match_for_each_row=True)
    box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder()

    self._target_assigner = target_assigner.TargetAssigner(
        similarity_calc, matcher, box_coder)
    self._anchor = anchor
    self._match_threshold = match_threshold
    self._unmatched_threshold = unmatched_threshold

  def label_anchors(self, gt_boxes, gt_labels):
    """Labels anchors with ground truth inputs.

    Args:
      gt_boxes: A float tensor with shape [N, 4] representing groundtruth boxes.
        For each row, it stores [y0, x0, y1, x1] for four corners of a box.
      gt_labels: A integer tensor with shape [N, 1] representing groundtruth
        classes.
    Returns:
      cls_targets_dict: ordered dictionary with keys
        [min_level, min_level+1, ..., max_level]. The values are tensor with
        shape [height_l, width_l, num_anchors_per_location]. The height_l and
        width_l represent the dimension of class logits at l-th level.
      box_targets_dict: ordered dictionary with keys
        [min_level, min_level+1, ..., max_level]. The values are tensor with
        shape [height_l, width_l, num_anchors_per_location * 4]. The height_l
        and width_l represent the dimension of bounding box regression output at
        l-th level.
      num_positives: scalar tensor storing number of positives in an image.
    """
    gt_box_list = box_list.BoxList(gt_boxes)
    anchor_box_list = box_list.BoxList(self._anchor.boxes)

    # The cls_weights, box_weights are not used.
    cls_targets, _, box_targets, _, matches = self._target_assigner.assign(
        anchor_box_list, gt_box_list, gt_labels)

    # Labels definition in matches.match_results:
    # (1) match_results[i]>=0, meaning that column i is matched with row
    #     match_results[i].
    # (2) match_results[i]=-1, meaning that column i is not matched.
    # (3) match_results[i]=-2, meaning that column i is ignored.
    match_results = tf.expand_dims(matches.match_results, axis=1)
    cls_targets = tf.cast(cls_targets, tf.int32)
    cls_targets = tf.where(
        tf.equal(match_results, -1), -tf.ones_like(cls_targets), cls_targets)
    cls_targets = tf.where(
        tf.equal(match_results, -2), -2 * tf.ones_like(cls_targets),
        cls_targets)

    # Unpacks labels into multi-level representations.
    cls_targets_dict = self._anchor.unpack_labels(cls_targets)
    box_targets_dict = self._anchor.unpack_labels(box_targets)
    num_positives = tf.reduce_sum(
        input_tensor=tf.cast(tf.greater(matches.match_results, -1), tf.float32))

    return cls_targets_dict, box_targets_dict, num_positives


class RpnAnchorLabeler(AnchorLabeler):
  """Labeler for Region Proposal Network."""

  def __init__(self, anchor, match_threshold=0.7,
               unmatched_threshold=0.3, rpn_batch_size_per_im=256,
               rpn_fg_fraction=0.5):
    AnchorLabeler.__init__(self, anchor, match_threshold=0.7,
                           unmatched_threshold=0.3)
    self._rpn_batch_size_per_im = rpn_batch_size_per_im
    self._rpn_fg_fraction = rpn_fg_fraction

  def _get_rpn_samples(self, match_results):
    """Computes anchor labels.

    This function performs subsampling for foreground (fg) and background (bg)
    anchors.
    Args:
      match_results: A integer tensor with shape [N] representing the
        matching results of anchors. (1) match_results[i]>=0,
        meaning that column i is matched with row match_results[i].
        (2) match_results[i]=-1, meaning that column i is not matched.
        (3) match_results[i]=-2, meaning that column i is ignored.
    Returns:
      score_targets: a integer tensor with the a shape of [N].
        (1) score_targets[i]=1, the anchor is a positive sample.
        (2) score_targets[i]=0, negative. (3) score_targets[i]=-1, the anchor is
        don't care (ignore).
    """
    sampler = (
        balanced_positive_negative_sampler.BalancedPositiveNegativeSampler(
            positive_fraction=self._rpn_fg_fraction, is_static=False))
    # indicator includes both positive and negative labels.
    # labels includes only positives labels.
    # positives = indicator & labels.
    # negatives = indicator & !labels.
    # ignore = !indicator.
    indicator = tf.greater(match_results, -2)
    labels = tf.greater(match_results, -1)

    samples = sampler.subsample(
        indicator, self._rpn_batch_size_per_im, labels)
    positive_labels = tf.where(
        tf.logical_and(samples, labels),
        tf.constant(2, dtype=tf.int32, shape=match_results.shape),
        tf.constant(0, dtype=tf.int32, shape=match_results.shape))
    negative_labels = tf.where(
        tf.logical_and(samples, tf.logical_not(labels)),
        tf.constant(1, dtype=tf.int32, shape=match_results.shape),
        tf.constant(0, dtype=tf.int32, shape=match_results.shape))
    ignore_labels = tf.fill(match_results.shape, -1)

    return (ignore_labels + positive_labels + negative_labels,
            positive_labels, negative_labels)

  def label_anchors(self, gt_boxes, gt_labels):
    """Labels anchors with ground truth inputs.

    Args:
      gt_boxes: A float tensor with shape [N, 4] representing groundtruth boxes.
        For each row, it stores [y0, x0, y1, x1] for four corners of a box.
      gt_labels: A integer tensor with shape [N, 1] representing groundtruth
        classes.
    Returns:
      score_targets_dict: ordered dictionary with keys
        [min_level, min_level+1, ..., max_level]. The values are tensor with
        shape [height_l, width_l, num_anchors]. The height_l and width_l
        represent the dimension of class logits at l-th level.
      box_targets_dict: ordered dictionary with keys
        [min_level, min_level+1, ..., max_level]. The values are tensor with
        shape [height_l, width_l, num_anchors * 4]. The height_l and
        width_l represent the dimension of bounding box regression output at
        l-th level.
    """
    gt_box_list = box_list.BoxList(gt_boxes)
    anchor_box_list = box_list.BoxList(self._anchor.boxes)

    # cls_targets, cls_weights, box_weights are not used.
    _, _, box_targets, _, matches = self._target_assigner.assign(
        anchor_box_list, gt_box_list, gt_labels)

    # score_targets contains the subsampled positive and negative anchors.
    score_targets, _, _ = self._get_rpn_samples(matches.match_results)

    # Unpacks labels.
    score_targets_dict = self._anchor.unpack_labels(score_targets)
    box_targets_dict = self._anchor.unpack_labels(box_targets)

    return score_targets_dict, box_targets_dict