File size: 40,376 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 |
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Classes to build various prediction heads in all supported models."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import numpy as np
import tensorflow as tf
from tensorflow.python.keras import backend
from official.vision.detection.modeling.architecture import nn_ops
from official.vision.detection.ops import spatial_transform_ops
class RpnHead(tf.keras.layers.Layer):
"""Region Proposal Network head."""
def __init__(self,
min_level,
max_level,
anchors_per_location,
num_convs=2,
num_filters=256,
use_separable_conv=False,
activation='relu',
use_batch_norm=True,
norm_activation=nn_ops.norm_activation_builder(
activation='relu')):
"""Initialize params to build Region Proposal Network head.
Args:
min_level: `int` number of minimum feature level.
max_level: `int` number of maximum feature level.
anchors_per_location: `int` number of number of anchors per pixel
location.
num_convs: `int` number that represents the number of the intermediate
conv layers before the prediction.
num_filters: `int` number that represents the number of filters of the
intermediate conv layers.
use_separable_conv: `bool`, indicating whether the separable conv layers
is used.
activation: activation function. Support 'relu' and 'swish'.
use_batch_norm: 'bool', indicating whether batchnorm layers are added.
norm_activation: an operation that includes a normalization layer
followed by an optional activation layer.
"""
self._min_level = min_level
self._max_level = max_level
self._anchors_per_location = anchors_per_location
if activation == 'relu':
self._activation_op = tf.nn.relu
elif activation == 'swish':
self._activation_op = tf.nn.swish
else:
raise ValueError('Unsupported activation `{}`.'.format(activation))
self._use_batch_norm = use_batch_norm
if use_separable_conv:
self._conv2d_op = functools.partial(
tf.keras.layers.SeparableConv2D,
depth_multiplier=1,
bias_initializer=tf.zeros_initializer())
else:
self._conv2d_op = functools.partial(
tf.keras.layers.Conv2D,
kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
bias_initializer=tf.zeros_initializer())
self._rpn_conv = self._conv2d_op(
num_filters,
kernel_size=(3, 3),
strides=(1, 1),
activation=(None if self._use_batch_norm else self._activation_op),
padding='same',
name='rpn')
self._rpn_class_conv = self._conv2d_op(
anchors_per_location,
kernel_size=(1, 1),
strides=(1, 1),
padding='valid',
name='rpn-class')
self._rpn_box_conv = self._conv2d_op(
4 * anchors_per_location,
kernel_size=(1, 1),
strides=(1, 1),
padding='valid',
name='rpn-box')
self._norm_activations = {}
if self._use_batch_norm:
for level in range(self._min_level, self._max_level + 1):
self._norm_activations[level] = norm_activation(name='rpn-l%d-bn' %
level)
def _shared_rpn_heads(self, features, anchors_per_location, level,
is_training):
"""Shared RPN heads."""
features = self._rpn_conv(features)
if self._use_batch_norm:
# The batch normalization layers are not shared between levels.
features = self._norm_activations[level](
features, is_training=is_training)
# Proposal classification scores
scores = self._rpn_class_conv(features)
# Proposal bbox regression deltas
bboxes = self._rpn_box_conv(features)
return scores, bboxes
def __call__(self, features, is_training=None):
scores_outputs = {}
box_outputs = {}
with backend.get_graph().as_default(), tf.name_scope('rpn_head'):
for level in range(self._min_level, self._max_level + 1):
scores_output, box_output = self._shared_rpn_heads(
features[level], self._anchors_per_location, level, is_training)
scores_outputs[level] = scores_output
box_outputs[level] = box_output
return scores_outputs, box_outputs
class FastrcnnHead(tf.keras.layers.Layer):
"""Fast R-CNN box head."""
def __init__(self,
num_classes,
num_convs=0,
num_filters=256,
use_separable_conv=False,
num_fcs=2,
fc_dims=1024,
activation='relu',
use_batch_norm=True,
norm_activation=nn_ops.norm_activation_builder(
activation='relu')):
"""Initialize params to build Fast R-CNN box head.
Args:
num_classes: a integer for the number of classes.
num_convs: `int` number that represents the number of the intermediate
conv layers before the FC layers.
num_filters: `int` number that represents the number of filters of the
intermediate conv layers.
use_separable_conv: `bool`, indicating whether the separable conv layers
is used.
num_fcs: `int` number that represents the number of FC layers before the
predictions.
fc_dims: `int` number that represents the number of dimension of the FC
layers.
activation: activation function. Support 'relu' and 'swish'.
use_batch_norm: 'bool', indicating whether batchnorm layers are added.
norm_activation: an operation that includes a normalization layer
followed by an optional activation layer.
"""
self._num_classes = num_classes
self._num_convs = num_convs
self._num_filters = num_filters
if use_separable_conv:
self._conv2d_op = functools.partial(
tf.keras.layers.SeparableConv2D,
depth_multiplier=1,
bias_initializer=tf.zeros_initializer())
else:
self._conv2d_op = functools.partial(
tf.keras.layers.Conv2D,
kernel_initializer=tf.keras.initializers.VarianceScaling(
scale=2, mode='fan_out', distribution='untruncated_normal'),
bias_initializer=tf.zeros_initializer())
self._num_fcs = num_fcs
self._fc_dims = fc_dims
if activation == 'relu':
self._activation_op = tf.nn.relu
elif activation == 'swish':
self._activation_op = tf.nn.swish
else:
raise ValueError('Unsupported activation `{}`.'.format(activation))
self._use_batch_norm = use_batch_norm
self._norm_activation = norm_activation
self._conv_ops = []
self._conv_bn_ops = []
for i in range(self._num_convs):
self._conv_ops.append(
self._conv2d_op(
self._num_filters,
kernel_size=(3, 3),
strides=(1, 1),
padding='same',
dilation_rate=(1, 1),
activation=(None if self._use_batch_norm else self._activation_op),
name='conv_{}'.format(i)))
if self._use_batch_norm:
self._conv_bn_ops.append(self._norm_activation())
self._fc_ops = []
self._fc_bn_ops = []
for i in range(self._num_fcs):
self._fc_ops.append(
tf.keras.layers.Dense(
units=self._fc_dims,
activation=(None if self._use_batch_norm else self._activation_op),
name='fc{}'.format(i)))
if self._use_batch_norm:
self._fc_bn_ops.append(self._norm_activation(fused=False))
self._class_predict = tf.keras.layers.Dense(
self._num_classes,
kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
bias_initializer=tf.zeros_initializer(),
name='class-predict')
self._box_predict = tf.keras.layers.Dense(
self._num_classes * 4,
kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.001),
bias_initializer=tf.zeros_initializer(),
name='box-predict')
def __call__(self, roi_features, is_training=None):
"""Box and class branches for the Mask-RCNN model.
Args:
roi_features: A ROI feature tensor of shape
[batch_size, num_rois, height_l, width_l, num_filters].
is_training: `boolean`, if True if model is in training mode.
Returns:
class_outputs: a tensor with a shape of
[batch_size, num_rois, num_classes], representing the class predictions.
box_outputs: a tensor with a shape of
[batch_size, num_rois, num_classes * 4], representing the box
predictions.
"""
with backend.get_graph().as_default(), tf.name_scope('fast_rcnn_head'):
# reshape inputs beofre FC.
_, num_rois, height, width, filters = roi_features.get_shape().as_list()
net = tf.reshape(roi_features, [-1, height, width, filters])
for i in range(self._num_convs):
net = self._conv_ops[i](net)
if self._use_batch_norm:
net = self._conv_bn_ops[i](net, is_training=is_training)
filters = self._num_filters if self._num_convs > 0 else filters
net = tf.reshape(net, [-1, num_rois, height * width * filters])
for i in range(self._num_fcs):
net = self._fc_ops[i](net)
if self._use_batch_norm:
net = self._fc_bn_ops[i](net, is_training=is_training)
class_outputs = self._class_predict(net)
box_outputs = self._box_predict(net)
return class_outputs, box_outputs
class MaskrcnnHead(tf.keras.layers.Layer):
"""Mask R-CNN head."""
def __init__(self,
num_classes,
mask_target_size,
num_convs=4,
num_filters=256,
use_separable_conv=False,
activation='relu',
use_batch_norm=True,
norm_activation=nn_ops.norm_activation_builder(
activation='relu')):
"""Initialize params to build Fast R-CNN head.
Args:
num_classes: a integer for the number of classes.
mask_target_size: a integer that is the resolution of masks.
num_convs: `int` number that represents the number of the intermediate
conv layers before the prediction.
num_filters: `int` number that represents the number of filters of the
intermediate conv layers.
use_separable_conv: `bool`, indicating whether the separable conv layers
is used.
activation: activation function. Support 'relu' and 'swish'.
use_batch_norm: 'bool', indicating whether batchnorm layers are added.
norm_activation: an operation that includes a normalization layer
followed by an optional activation layer.
"""
self._num_classes = num_classes
self._mask_target_size = mask_target_size
self._num_convs = num_convs
self._num_filters = num_filters
if use_separable_conv:
self._conv2d_op = functools.partial(
tf.keras.layers.SeparableConv2D,
depth_multiplier=1,
bias_initializer=tf.zeros_initializer())
else:
self._conv2d_op = functools.partial(
tf.keras.layers.Conv2D,
kernel_initializer=tf.keras.initializers.VarianceScaling(
scale=2, mode='fan_out', distribution='untruncated_normal'),
bias_initializer=tf.zeros_initializer())
if activation == 'relu':
self._activation_op = tf.nn.relu
elif activation == 'swish':
self._activation_op = tf.nn.swish
else:
raise ValueError('Unsupported activation `{}`.'.format(activation))
self._use_batch_norm = use_batch_norm
self._norm_activation = norm_activation
self._conv2d_ops = []
for i in range(self._num_convs):
self._conv2d_ops.append(
self._conv2d_op(
self._num_filters,
kernel_size=(3, 3),
strides=(1, 1),
padding='same',
dilation_rate=(1, 1),
activation=(None if self._use_batch_norm else self._activation_op),
name='mask-conv-l%d' % i))
self._mask_conv_transpose = tf.keras.layers.Conv2DTranspose(
self._num_filters,
kernel_size=(2, 2),
strides=(2, 2),
padding='valid',
activation=(None if self._use_batch_norm else self._activation_op),
kernel_initializer=tf.keras.initializers.VarianceScaling(
scale=2, mode='fan_out', distribution='untruncated_normal'),
bias_initializer=tf.zeros_initializer(),
name='conv5-mask')
def __call__(self, roi_features, class_indices, is_training=None):
"""Mask branch for the Mask-RCNN model.
Args:
roi_features: A ROI feature tensor of shape
[batch_size, num_rois, height_l, width_l, num_filters].
class_indices: a Tensor of shape [batch_size, num_rois], indicating
which class the ROI is.
is_training: `boolean`, if True if model is in training mode.
Returns:
mask_outputs: a tensor with a shape of
[batch_size, num_masks, mask_height, mask_width, num_classes],
representing the mask predictions.
fg_gather_indices: a tensor with a shape of [batch_size, num_masks, 2],
representing the fg mask targets.
Raises:
ValueError: If boxes is not a rank-3 tensor or the last dimension of
boxes is not 4.
"""
with backend.get_graph().as_default():
with tf.name_scope('mask_head'):
_, num_rois, height, width, filters = roi_features.get_shape().as_list()
net = tf.reshape(roi_features, [-1, height, width, filters])
for i in range(self._num_convs):
net = self._conv2d_ops[i](net)
if self._use_batch_norm:
net = self._norm_activation()(net, is_training=is_training)
net = self._mask_conv_transpose(net)
if self._use_batch_norm:
net = self._norm_activation()(net, is_training=is_training)
mask_outputs = self._conv2d_op(
self._num_classes,
kernel_size=(1, 1),
strides=(1, 1),
padding='valid',
name='mask_fcn_logits')(
net)
mask_outputs = tf.reshape(mask_outputs, [
-1, num_rois, self._mask_target_size, self._mask_target_size,
self._num_classes
])
with tf.name_scope('masks_post_processing'):
# TODO(pengchong): Figure out the way not to use the static inferred
# batch size.
batch_size, num_masks = class_indices.get_shape().as_list()
mask_outputs = tf.transpose(a=mask_outputs, perm=[0, 1, 4, 2, 3])
# Contructs indices for gather.
batch_indices = tf.tile(
tf.expand_dims(tf.range(batch_size), axis=1), [1, num_masks])
mask_indices = tf.tile(
tf.expand_dims(tf.range(num_masks), axis=0), [batch_size, 1])
gather_indices = tf.stack(
[batch_indices, mask_indices, class_indices], axis=2)
mask_outputs = tf.gather_nd(mask_outputs, gather_indices)
return mask_outputs
class RetinanetHead(object):
"""RetinaNet head."""
def __init__(self,
min_level,
max_level,
num_classes,
anchors_per_location,
num_convs=4,
num_filters=256,
use_separable_conv=False,
norm_activation=nn_ops.norm_activation_builder(
activation='relu')):
"""Initialize params to build RetinaNet head.
Args:
min_level: `int` number of minimum feature level.
max_level: `int` number of maximum feature level.
num_classes: `int` number of classification categories.
anchors_per_location: `int` number of anchors per pixel location.
num_convs: `int` number of stacked convolution before the last prediction
layer.
num_filters: `int` number of filters used in the head architecture.
use_separable_conv: `bool` to indicate whether to use separable
convoluation.
norm_activation: an operation that includes a normalization layer
followed by an optional activation layer.
"""
self._min_level = min_level
self._max_level = max_level
self._num_classes = num_classes
self._anchors_per_location = anchors_per_location
self._num_convs = num_convs
self._num_filters = num_filters
self._use_separable_conv = use_separable_conv
with tf.name_scope('class_net') as scope_name:
self._class_name_scope = tf.name_scope(scope_name)
with tf.name_scope('box_net') as scope_name:
self._box_name_scope = tf.name_scope(scope_name)
self._build_class_net_layers(norm_activation)
self._build_box_net_layers(norm_activation)
def _class_net_batch_norm_name(self, i, level):
return 'class-%d-%d' % (i, level)
def _box_net_batch_norm_name(self, i, level):
return 'box-%d-%d' % (i, level)
def _build_class_net_layers(self, norm_activation):
"""Build re-usable layers for class prediction network."""
if self._use_separable_conv:
self._class_predict = tf.keras.layers.SeparableConv2D(
self._num_classes * self._anchors_per_location,
kernel_size=(3, 3),
bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
padding='same',
name='class-predict')
else:
self._class_predict = tf.keras.layers.Conv2D(
self._num_classes * self._anchors_per_location,
kernel_size=(3, 3),
bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
kernel_initializer=tf.keras.initializers.RandomNormal(stddev=1e-5),
padding='same',
name='class-predict')
self._class_conv = []
self._class_norm_activation = {}
for i in range(self._num_convs):
if self._use_separable_conv:
self._class_conv.append(
tf.keras.layers.SeparableConv2D(
self._num_filters,
kernel_size=(3, 3),
bias_initializer=tf.zeros_initializer(),
activation=None,
padding='same',
name='class-' + str(i)))
else:
self._class_conv.append(
tf.keras.layers.Conv2D(
self._num_filters,
kernel_size=(3, 3),
bias_initializer=tf.zeros_initializer(),
kernel_initializer=tf.keras.initializers.RandomNormal(
stddev=0.01),
activation=None,
padding='same',
name='class-' + str(i)))
for level in range(self._min_level, self._max_level + 1):
name = self._class_net_batch_norm_name(i, level)
self._class_norm_activation[name] = norm_activation(name=name)
def _build_box_net_layers(self, norm_activation):
"""Build re-usable layers for box prediction network."""
if self._use_separable_conv:
self._box_predict = tf.keras.layers.SeparableConv2D(
4 * self._anchors_per_location,
kernel_size=(3, 3),
bias_initializer=tf.zeros_initializer(),
padding='same',
name='box-predict')
else:
self._box_predict = tf.keras.layers.Conv2D(
4 * self._anchors_per_location,
kernel_size=(3, 3),
bias_initializer=tf.zeros_initializer(),
kernel_initializer=tf.keras.initializers.RandomNormal(stddev=1e-5),
padding='same',
name='box-predict')
self._box_conv = []
self._box_norm_activation = {}
for i in range(self._num_convs):
if self._use_separable_conv:
self._box_conv.append(
tf.keras.layers.SeparableConv2D(
self._num_filters,
kernel_size=(3, 3),
activation=None,
bias_initializer=tf.zeros_initializer(),
padding='same',
name='box-' + str(i)))
else:
self._box_conv.append(
tf.keras.layers.Conv2D(
self._num_filters,
kernel_size=(3, 3),
activation=None,
bias_initializer=tf.zeros_initializer(),
kernel_initializer=tf.keras.initializers.RandomNormal(
stddev=0.01),
padding='same',
name='box-' + str(i)))
for level in range(self._min_level, self._max_level + 1):
name = self._box_net_batch_norm_name(i, level)
self._box_norm_activation[name] = norm_activation(name=name)
def __call__(self, fpn_features, is_training=None):
"""Returns outputs of RetinaNet head."""
class_outputs = {}
box_outputs = {}
with backend.get_graph().as_default(), tf.name_scope('retinanet_head'):
for level in range(self._min_level, self._max_level + 1):
features = fpn_features[level]
class_outputs[level] = self.class_net(
features, level, is_training=is_training)
box_outputs[level] = self.box_net(
features, level, is_training=is_training)
return class_outputs, box_outputs
def class_net(self, features, level, is_training):
"""Class prediction network for RetinaNet."""
with self._class_name_scope:
for i in range(self._num_convs):
features = self._class_conv[i](features)
# The convolution layers in the class net are shared among all levels,
# but each level has its batch normlization to capture the statistical
# difference among different levels.
name = self._class_net_batch_norm_name(i, level)
features = self._class_norm_activation[name](
features, is_training=is_training)
classes = self._class_predict(features)
return classes
def box_net(self, features, level, is_training=None):
"""Box regression network for RetinaNet."""
with self._box_name_scope:
for i in range(self._num_convs):
features = self._box_conv[i](features)
# The convolution layers in the box net are shared among all levels, but
# each level has its batch normlization to capture the statistical
# difference among different levels.
name = self._box_net_batch_norm_name(i, level)
features = self._box_norm_activation[name](
features, is_training=is_training)
boxes = self._box_predict(features)
return boxes
# TODO(yeqing): Refactor this class when it is ready for var_scope reuse.
class ShapemaskPriorHead(object):
"""ShapeMask Prior head."""
def __init__(self,
num_classes,
num_downsample_channels,
mask_crop_size,
use_category_for_mask,
shape_prior_path):
"""Initialize params to build RetinaNet head.
Args:
num_classes: Number of output classes.
num_downsample_channels: number of channels in mask branch.
mask_crop_size: feature crop size.
use_category_for_mask: use class information in mask branch.
shape_prior_path: the path to load shape priors.
"""
self._mask_num_classes = num_classes if use_category_for_mask else 1
self._num_downsample_channels = num_downsample_channels
self._mask_crop_size = mask_crop_size
self._shape_prior_path = shape_prior_path
self._use_category_for_mask = use_category_for_mask
self._shape_prior_fc = tf.keras.layers.Dense(
self._num_downsample_channels, name='shape-prior-fc')
def __call__(self, fpn_features, boxes, outer_boxes, classes, is_training):
"""Generate the detection priors from the box detections and FPN features.
This corresponds to the Fig. 4 of the ShapeMask paper at
https://arxiv.org/pdf/1904.03239.pdf
Args:
fpn_features: a dictionary of FPN features.
boxes: a float tensor of shape [batch_size, num_instances, 4]
representing the tight gt boxes from dataloader/detection.
outer_boxes: a float tensor of shape [batch_size, num_instances, 4]
representing the loose gt boxes from dataloader/detection.
classes: a int Tensor of shape [batch_size, num_instances]
of instance classes.
is_training: training mode or not.
Returns:
instance_features: a float Tensor of shape [batch_size * num_instances,
mask_crop_size, mask_crop_size, num_downsample_channels]. This is the
instance feature crop.
detection_priors: A float Tensor of shape [batch_size * num_instances,
mask_size, mask_size, 1].
"""
with backend.get_graph().as_default(), tf.name_scope('prior_mask'):
batch_size, num_instances, _ = boxes.get_shape().as_list()
outer_boxes = tf.cast(outer_boxes, tf.float32)
boxes = tf.cast(boxes, tf.float32)
instance_features = spatial_transform_ops.multilevel_crop_and_resize(
fpn_features, outer_boxes, output_size=self._mask_crop_size)
instance_features = self._shape_prior_fc(instance_features)
shape_priors = self._get_priors()
# Get uniform priors for each outer box.
uniform_priors = tf.ones([batch_size, num_instances, self._mask_crop_size,
self._mask_crop_size])
uniform_priors = spatial_transform_ops.crop_mask_in_target_box(
uniform_priors, boxes, outer_boxes, self._mask_crop_size)
# Classify shape priors using uniform priors + instance features.
prior_distribution = self._classify_shape_priors(
tf.cast(instance_features, tf.float32), uniform_priors, classes)
instance_priors = tf.gather(shape_priors, classes)
instance_priors *= tf.expand_dims(tf.expand_dims(
tf.cast(prior_distribution, tf.float32), axis=-1), axis=-1)
instance_priors = tf.reduce_sum(instance_priors, axis=2)
detection_priors = spatial_transform_ops.crop_mask_in_target_box(
instance_priors, boxes, outer_boxes, self._mask_crop_size)
return instance_features, detection_priors
def _get_priors(self):
"""Load shape priors from file."""
# loads class specific or agnostic shape priors
if self._shape_prior_path:
# Priors are loaded into shape [mask_num_classes, num_clusters, 32, 32].
priors = np.load(tf.io.gfile.GFile(self._shape_prior_path, 'rb'))
priors = tf.convert_to_tensor(priors, dtype=tf.float32)
self._num_clusters = priors.get_shape().as_list()[1]
else:
# If prior path does not exist, do not use priors, i.e., pirors equal to
# uniform empty 32x32 patch.
self._num_clusters = 1
priors = tf.zeros([self._mask_num_classes, self._num_clusters,
self._mask_crop_size, self._mask_crop_size])
return priors
def _classify_shape_priors(self, features, uniform_priors, classes):
"""Classify the uniform prior by predicting the shape modes.
Classify the object crop features into K modes of the clusters for each
category.
Args:
features: A float Tensor of shape [batch_size, num_instances,
mask_size, mask_size, num_channels].
uniform_priors: A float Tensor of shape [batch_size, num_instances,
mask_size, mask_size] representing the uniform detection priors.
classes: A int Tensor of shape [batch_size, num_instances]
of detection class ids.
Returns:
prior_distribution: A float Tensor of shape
[batch_size, num_instances, num_clusters] representing the classifier
output probability over all possible shapes.
"""
batch_size, num_instances, _, _, _ = features.get_shape().as_list()
features *= tf.expand_dims(uniform_priors, axis=-1)
# Reduce spatial dimension of features. The features have shape
# [batch_size, num_instances, num_channels].
features = tf.reduce_mean(features, axis=(2, 3))
logits = tf.keras.layers.Dense(
self._mask_num_classes * self._num_clusters,
kernel_initializer=tf.random_normal_initializer(stddev=0.01))(features)
logits = tf.reshape(logits,
[batch_size, num_instances,
self._mask_num_classes, self._num_clusters])
if self._use_category_for_mask:
logits = tf.gather(logits, tf.expand_dims(classes, axis=-1), batch_dims=2)
logits = tf.squeeze(logits, axis=2)
else:
logits = logits[:, :, 0, :]
distribution = tf.nn.softmax(logits, name='shape_prior_weights')
return distribution
class ShapemaskCoarsemaskHead(object):
"""ShapemaskCoarsemaskHead head."""
def __init__(self,
num_classes,
num_downsample_channels,
mask_crop_size,
use_category_for_mask,
num_convs,
norm_activation=nn_ops.norm_activation_builder()):
"""Initialize params to build ShapeMask coarse and fine prediction head.
Args:
num_classes: `int` number of mask classification categories.
num_downsample_channels: `int` number of filters at mask head.
mask_crop_size: feature crop size.
use_category_for_mask: use class information in mask branch.
num_convs: `int` number of stacked convolution before the last prediction
layer.
norm_activation: an operation that includes a normalization layer
followed by an optional activation layer.
"""
self._mask_num_classes = num_classes if use_category_for_mask else 1
self._use_category_for_mask = use_category_for_mask
self._num_downsample_channels = num_downsample_channels
self._mask_crop_size = mask_crop_size
self._num_convs = num_convs
self._norm_activation = norm_activation
self._coarse_mask_fc = tf.keras.layers.Dense(
self._num_downsample_channels, name='coarse-mask-fc')
self._class_conv = []
self._class_norm_activation = []
for i in range(self._num_convs):
self._class_conv.append(tf.keras.layers.Conv2D(
self._num_downsample_channels,
kernel_size=(3, 3),
bias_initializer=tf.zeros_initializer(),
kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
padding='same',
name='coarse-mask-class-%d' % i))
self._class_norm_activation.append(
norm_activation(name='coarse-mask-class-%d-bn' % i))
self._class_predict = tf.keras.layers.Conv2D(
self._mask_num_classes,
kernel_size=(1, 1),
# Focal loss bias initialization to have foreground 0.01 probability.
bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
padding='same',
name='coarse-mask-class-predict')
def __call__(self, features, detection_priors, classes, is_training):
"""Generate instance masks from FPN features and detection priors.
This corresponds to the Fig. 5-6 of the ShapeMask paper at
https://arxiv.org/pdf/1904.03239.pdf
Args:
features: a float Tensor of shape [batch_size, num_instances,
mask_crop_size, mask_crop_size, num_downsample_channels]. This is the
instance feature crop.
detection_priors: a float Tensor of shape [batch_size, num_instances,
mask_crop_size, mask_crop_size, 1]. This is the detection prior for
the instance.
classes: a int Tensor of shape [batch_size, num_instances]
of instance classes.
is_training: a bool indicating whether in training mode.
Returns:
mask_outputs: instance mask prediction as a float Tensor of shape
[batch_size, num_instances, mask_size, mask_size].
"""
with backend.get_graph().as_default(), tf.name_scope('coarse_mask'):
# Transform detection priors to have the same dimension as features.
detection_priors = tf.expand_dims(detection_priors, axis=-1)
detection_priors = self._coarse_mask_fc(detection_priors)
features += detection_priors
mask_logits = self.decoder_net(features, is_training)
# Gather the logits with right input class.
if self._use_category_for_mask:
mask_logits = tf.transpose(mask_logits, [0, 1, 4, 2, 3])
mask_logits = tf.gather(mask_logits, tf.expand_dims(classes, -1),
batch_dims=2)
mask_logits = tf.squeeze(mask_logits, axis=2)
else:
mask_logits = mask_logits[..., 0]
return mask_logits
def decoder_net(self, features, is_training=False):
"""Coarse mask decoder network architecture.
Args:
features: A tensor of size [batch, height_in, width_in, channels_in].
is_training: Whether batch_norm layers are in training mode.
Returns:
images: A feature tensor of size [batch, output_size, output_size,
num_channels]
"""
(batch_size, num_instances, height, width,
num_channels) = features.get_shape().as_list()
features = tf.reshape(features, [batch_size * num_instances, height, width,
num_channels])
for i in range(self._num_convs):
features = self._class_conv[i](features)
features = self._class_norm_activation[i](features,
is_training=is_training)
mask_logits = self._class_predict(features)
mask_logits = tf.reshape(mask_logits, [batch_size, num_instances, height,
width, self._mask_num_classes])
return mask_logits
class ShapemaskFinemaskHead(object):
"""ShapemaskFinemaskHead head."""
def __init__(self,
num_classes,
num_downsample_channels,
mask_crop_size,
use_category_for_mask,
num_convs,
upsample_factor,
norm_activation=nn_ops.norm_activation_builder()):
"""Initialize params to build ShapeMask coarse and fine prediction head.
Args:
num_classes: `int` number of mask classification categories.
num_downsample_channels: `int` number of filters at mask head.
mask_crop_size: feature crop size.
use_category_for_mask: use class information in mask branch.
num_convs: `int` number of stacked convolution before the last prediction
layer.
upsample_factor: `int` number of fine mask upsampling factor.
norm_activation: an operation that includes a batch normalization layer
followed by a relu layer(optional).
"""
self._use_category_for_mask = use_category_for_mask
self._mask_num_classes = num_classes if use_category_for_mask else 1
self._num_downsample_channels = num_downsample_channels
self._mask_crop_size = mask_crop_size
self._num_convs = num_convs
self.up_sample_factor = upsample_factor
self._fine_mask_fc = tf.keras.layers.Dense(
self._num_downsample_channels, name='fine-mask-fc')
self._upsample_conv = tf.keras.layers.Conv2DTranspose(
self._num_downsample_channels,
(self.up_sample_factor, self.up_sample_factor),
(self.up_sample_factor, self.up_sample_factor),
name='fine-mask-conv2d-tran')
self._fine_class_conv = []
self._fine_class_bn = []
for i in range(self._num_convs):
self._fine_class_conv.append(
tf.keras.layers.Conv2D(
self._num_downsample_channels,
kernel_size=(3, 3),
bias_initializer=tf.zeros_initializer(),
kernel_initializer=tf.keras.initializers.RandomNormal(
stddev=0.01),
activation=None,
padding='same',
name='fine-mask-class-%d' % i))
self._fine_class_bn.append(norm_activation(
name='fine-mask-class-%d-bn' % i))
self._class_predict_conv = tf.keras.layers.Conv2D(
self._mask_num_classes,
kernel_size=(1, 1),
# Focal loss bias initialization to have foreground 0.01 probability.
bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
padding='same',
name='fine-mask-class-predict')
def __call__(self, features, mask_logits, classes, is_training):
"""Generate instance masks from FPN features and detection priors.
This corresponds to the Fig. 5-6 of the ShapeMask paper at
https://arxiv.org/pdf/1904.03239.pdf
Args:
features: a float Tensor of shape
[batch_size, num_instances, mask_crop_size, mask_crop_size,
num_downsample_channels]. This is the instance feature crop.
mask_logits: a float Tensor of shape
[batch_size, num_instances, mask_crop_size, mask_crop_size] indicating
predicted mask logits.
classes: a int Tensor of shape [batch_size, num_instances]
of instance classes.
is_training: a bool indicating whether in training mode.
Returns:
mask_outputs: instance mask prediction as a float Tensor of shape
[batch_size, num_instances, mask_size, mask_size].
"""
# Extract the foreground mean features
# with tf.variable_scope('fine_mask', reuse=tf.AUTO_REUSE):
with backend.get_graph().as_default(), tf.name_scope('fine_mask'):
mask_probs = tf.nn.sigmoid(mask_logits)
# Compute instance embedding for hard average.
binary_mask = tf.cast(tf.greater(mask_probs, 0.5), features.dtype)
instance_embedding = tf.reduce_sum(
features * tf.expand_dims(binary_mask, axis=-1), axis=(2, 3))
instance_embedding /= tf.expand_dims(
tf.reduce_sum(binary_mask, axis=(2, 3)) + 1e-20, axis=-1)
# Take the difference between crop features and mean instance features.
features -= tf.expand_dims(
tf.expand_dims(instance_embedding, axis=2), axis=2)
features += self._fine_mask_fc(tf.expand_dims(mask_probs, axis=-1))
# Decoder to generate upsampled segmentation mask.
mask_logits = self.decoder_net(features, is_training)
if self._use_category_for_mask:
mask_logits = tf.transpose(mask_logits, [0, 1, 4, 2, 3])
mask_logits = tf.gather(mask_logits,
tf.expand_dims(classes, -1), batch_dims=2)
mask_logits = tf.squeeze(mask_logits, axis=2)
else:
mask_logits = mask_logits[..., 0]
return mask_logits
def decoder_net(self, features, is_training=False):
"""Fine mask decoder network architecture.
Args:
features: A tensor of size [batch, height_in, width_in, channels_in].
is_training: Whether batch_norm layers are in training mode.
Returns:
images: A feature tensor of size [batch, output_size, output_size,
num_channels], where output size is self._gt_upsample_scale times
that of input.
"""
(batch_size, num_instances, height, width,
num_channels) = features.get_shape().as_list()
features = tf.reshape(features, [batch_size * num_instances, height, width,
num_channels])
for i in range(self._num_convs):
features = self._fine_class_conv[i](features)
features = self._fine_class_bn[i](features, is_training=is_training)
if self.up_sample_factor > 1:
features = self._upsample_conv(features)
# Predict per-class instance masks.
mask_logits = self._class_predict_conv(features)
mask_logits = tf.reshape(mask_logits,
[batch_size, num_instances,
height * self.up_sample_factor,
width * self.up_sample_factor,
self._mask_num_classes])
return mask_logits
|