File size: 12,901 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains definitions for the post-activation form of Residual Networks.

Residual networks (ResNets) were proposed in:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
    Deep Residual Learning for Image Recognition. arXiv:1512.03385
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from absl import logging
import tensorflow as tf
from tensorflow.python.keras import backend
from official.vision.detection.modeling.architecture import nn_ops

# TODO(b/140112644): Refactor the code with Keras style, i.e. build and call.
class Resnet(object):
  """Class to build ResNet family model."""

  def __init__(self,
               resnet_depth,
               activation='relu',
               norm_activation=nn_ops.norm_activation_builder(
                   activation='relu'),
               data_format='channels_last'):
    """ResNet initialization function.

    Args:
      resnet_depth: `int` depth of ResNet backbone model.
      norm_activation: an operation that includes a normalization layer
        followed by an optional activation layer.
      data_format: `str` either "channels_first" for `[batch, channels, height,
        width]` or "channels_last for `[batch, height, width, channels]`.
    """
    self._resnet_depth = resnet_depth
    if activation == 'relu':
      self._activation_op = tf.nn.relu
    elif activation == 'swish':
      self._activation_op = tf.nn.swish
    else:
      raise ValueError('Unsupported activation `{}`.'.format(activation))
    self._norm_activation = norm_activation
    self._data_format = data_format

    model_params = {
        10: {'block': self.residual_block, 'layers': [1, 1, 1, 1]},
        18: {'block': self.residual_block, 'layers': [2, 2, 2, 2]},
        34: {'block': self.residual_block, 'layers': [3, 4, 6, 3]},
        50: {'block': self.bottleneck_block, 'layers': [3, 4, 6, 3]},
        101: {'block': self.bottleneck_block, 'layers': [3, 4, 23, 3]},
        152: {'block': self.bottleneck_block, 'layers': [3, 8, 36, 3]},
        200: {'block': self.bottleneck_block, 'layers': [3, 24, 36, 3]}
    }

    if resnet_depth not in model_params:
      valid_resnet_depths = ', '.join(
          [str(depth) for depth in sorted(model_params.keys())])
      raise ValueError(
          'The resnet_depth should be in [%s]. Not a valid resnet_depth:'%(
              valid_resnet_depths), self._resnet_depth)
    params = model_params[resnet_depth]
    self._resnet_fn = self.resnet_v1_generator(
        params['block'], params['layers'])

  def __call__(self, inputs, is_training=None):
    """Returns the ResNet model for a given size and number of output classes.

    Args:
      inputs: a `Tesnor` with shape [batch_size, height, width, 3] representing
        a batch of images.
      is_training: `bool` if True, the model is in training mode.

    Returns:
      a `dict` containing `int` keys for continuous feature levels [2, 3, 4, 5].
      The values are corresponding feature hierarchy in ResNet with shape
      [batch_size, height_l, width_l, num_filters].
    """
    with backend.get_graph().as_default():
      with tf.name_scope('resnet%s' % self._resnet_depth):
        return self._resnet_fn(inputs, is_training)

  def fixed_padding(self, inputs, kernel_size):
    """Pads the input along the spatial dimensions independently of input size.

    Args:
      inputs: `Tensor` of size `[batch, channels, height, width]` or
          `[batch, height, width, channels]` depending on `data_format`.
      kernel_size: `int` kernel size to be used for `conv2d` or max_pool2d`
          operations. Should be a positive integer.

    Returns:
      A padded `Tensor` of the same `data_format` with size either intact
      (if `kernel_size == 1`) or padded (if `kernel_size > 1`).
    """
    pad_total = kernel_size - 1
    pad_beg = pad_total // 2
    pad_end = pad_total - pad_beg
    if self._data_format == 'channels_first':
      padded_inputs = tf.pad(
          tensor=inputs,
          paddings=[[0, 0], [0, 0], [pad_beg, pad_end], [pad_beg, pad_end]])
    else:
      padded_inputs = tf.pad(
          tensor=inputs,
          paddings=[[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]])

    return padded_inputs

  def conv2d_fixed_padding(self, inputs, filters, kernel_size, strides):
    """Strided 2-D convolution with explicit padding.

    The padding is consistent and is based only on `kernel_size`, not on the
    dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone).

    Args:
      inputs: `Tensor` of size `[batch, channels, height_in, width_in]`.
      filters: `int` number of filters in the convolution.
      kernel_size: `int` size of the kernel to be used in the convolution.
      strides: `int` strides of the convolution.

    Returns:
      A `Tensor` of shape `[batch, filters, height_out, width_out]`.
    """
    if strides > 1:
      inputs = self.fixed_padding(inputs, kernel_size)

    return tf.keras.layers.Conv2D(
        filters=filters,
        kernel_size=kernel_size,
        strides=strides,
        padding=('SAME' if strides == 1 else 'VALID'),
        use_bias=False,
        kernel_initializer=tf.initializers.VarianceScaling(),
        data_format=self._data_format)(
            inputs=inputs)

  def residual_block(self,
                     inputs,
                     filters,
                     strides,
                     use_projection=False,
                     is_training=None):
    """Standard building block for residual networks with BN after convolutions.

    Args:
      inputs: `Tensor` of size `[batch, channels, height, width]`.
      filters: `int` number of filters for the first two convolutions. Note that
          the third and final convolution will use 4 times as many filters.
      strides: `int` block stride. If greater than 1, this block will ultimately
          downsample the input.
      use_projection: `bool` for whether this block should use a projection
          shortcut (versus the default identity shortcut). This is usually
          `True` for the first block of a block group, which may change the
          number of filters and the resolution.
      is_training: `bool` if True, the model is in training mode.
    Returns:
      The output `Tensor` of the block.
    """
    shortcut = inputs
    if use_projection:
      # Projection shortcut in first layer to match filters and strides
      shortcut = self.conv2d_fixed_padding(
          inputs=inputs, filters=filters, kernel_size=1, strides=strides)
      shortcut = self._norm_activation(use_activation=False)(
          shortcut, is_training=is_training)

    inputs = self.conv2d_fixed_padding(
        inputs=inputs, filters=filters, kernel_size=3, strides=strides)
    inputs = self._norm_activation()(inputs, is_training=is_training)

    inputs = self.conv2d_fixed_padding(
        inputs=inputs, filters=filters, kernel_size=3, strides=1)
    inputs = self._norm_activation(use_activation=False, init_zero=True)(
        inputs, is_training=is_training)

    return self._activation_op(inputs + shortcut)

  def bottleneck_block(self,
                       inputs,
                       filters,
                       strides,
                       use_projection=False,
                       is_training=None):
    """Bottleneck block variant for residual networks with BN after convolutions.

    Args:
      inputs: `Tensor` of size `[batch, channels, height, width]`.
      filters: `int` number of filters for the first two convolutions. Note that
          the third and final convolution will use 4 times as many filters.
      strides: `int` block stride. If greater than 1, this block will ultimately
          downsample the input.
      use_projection: `bool` for whether this block should use a projection
          shortcut (versus the default identity shortcut). This is usually
          `True` for the first block of a block group, which may change the
          number of filters and the resolution.
      is_training: `bool` if True, the model is in training mode.

    Returns:
      The output `Tensor` of the block.
    """
    shortcut = inputs
    if use_projection:
      # Projection shortcut only in first block within a group. Bottleneck
      # blocks end with 4 times the number of filters.
      filters_out = 4 * filters
      shortcut = self.conv2d_fixed_padding(
          inputs=inputs, filters=filters_out, kernel_size=1, strides=strides)
      shortcut = self._norm_activation(use_activation=False)(
          shortcut, is_training=is_training)

    inputs = self.conv2d_fixed_padding(
        inputs=inputs, filters=filters, kernel_size=1, strides=1)
    inputs = self._norm_activation()(inputs, is_training=is_training)

    inputs = self.conv2d_fixed_padding(
        inputs=inputs, filters=filters, kernel_size=3, strides=strides)
    inputs = self._norm_activation()(inputs, is_training=is_training)

    inputs = self.conv2d_fixed_padding(
        inputs=inputs, filters=4 * filters, kernel_size=1, strides=1)
    inputs = self._norm_activation(use_activation=False, init_zero=True)(
        inputs, is_training=is_training)

    return self._activation_op(inputs + shortcut)

  def block_group(self, inputs, filters, block_fn, blocks, strides, name,
                  is_training):
    """Creates one group of blocks for the ResNet model.

    Args:
      inputs: `Tensor` of size `[batch, channels, height, width]`.
      filters: `int` number of filters for the first convolution of the layer.
      block_fn: `function` for the block to use within the model
      blocks: `int` number of blocks contained in the layer.
      strides: `int` stride to use for the first convolution of the layer. If
          greater than 1, this layer will downsample the input.
      name: `str`name for the Tensor output of the block layer.
      is_training: `bool` if True, the model is in training mode.

    Returns:
      The output `Tensor` of the block layer.
    """
    # Only the first block per block_group uses projection shortcut and strides.
    inputs = block_fn(inputs, filters, strides, use_projection=True,
                      is_training=is_training)

    for _ in range(1, blocks):
      inputs = block_fn(inputs, filters, 1, is_training=is_training)

    return tf.identity(inputs, name)

  def resnet_v1_generator(self, block_fn, layers):
    """Generator for ResNet v1 models.

    Args:
      block_fn: `function` for the block to use within the model. Either
          `residual_block` or `bottleneck_block`.
      layers: list of 4 `int`s denoting the number of blocks to include in each
        of the 4 block groups. Each group consists of blocks that take inputs of
        the same resolution.

    Returns:
      Model `function` that takes in `inputs` and `is_training` and returns the
      output `Tensor` of the ResNet model.
    """

    def model(inputs, is_training=None):
      """Creation of the model graph."""
      inputs = self.conv2d_fixed_padding(
          inputs=inputs, filters=64, kernel_size=7, strides=2)
      inputs = tf.identity(inputs, 'initial_conv')
      inputs = self._norm_activation()(inputs, is_training=is_training)

      inputs = tf.keras.layers.MaxPool2D(
          pool_size=3, strides=2, padding='SAME',
          data_format=self._data_format)(
              inputs)
      inputs = tf.identity(inputs, 'initial_max_pool')

      c2 = self.block_group(
          inputs=inputs, filters=64, block_fn=block_fn, blocks=layers[0],
          strides=1, name='block_group1', is_training=is_training)
      c3 = self.block_group(
          inputs=c2, filters=128, block_fn=block_fn, blocks=layers[1],
          strides=2, name='block_group2', is_training=is_training)
      c4 = self.block_group(
          inputs=c3, filters=256, block_fn=block_fn, blocks=layers[2],
          strides=2, name='block_group3', is_training=is_training)
      c5 = self.block_group(
          inputs=c4, filters=512, block_fn=block_fn, blocks=layers[3],
          strides=2, name='block_group4', is_training=is_training)
      return {2: c2, 3: c3, 4: c4, 5: c5}

    return model